NuDAM®

ND-6520 RS-232 to RS-422/RS-485 Converter
ND-6510 RS-422/RS-485 Repeater

User’s Guide
Manual Rev. 2.10: June 22, 1999

The information in this document is subject to change without prior notice in order to improve reliability, design and function and does not represent a commitment on the part of the manufacturer.

In no event will the manufacturer be liable for direct, indirect, special, incidental, or consequential damages arising out of the use or inability to use the product or documentation, even if advised of the possibility of such damages.

This document contains proprietary information protected by copyright. All rights are reserved. No part of this manual may be reproduced by any mechanical, electronic, or other means in any form without prior written permission of the manufacturer.

Trademarks
Nudam is registered trademarks of ADLink Technology Inc., Other product names mentioned herein are used for identification purposes only and may be trademarks and/or registered trademarks of their respective companies.
Contents

1. **INTRODUCTION** ... 1-1
 1.1 WHAT IS NuDAM? ... 1-1
 1.2 OUTSTANDING FEATURES OF NuDAM 1-1
 1.3 NuDAM-6000 SERIES PRODUCTS OVERVIEW 1-3
 1.4 EIA RS-485 STANDARD .. 1-4
 1.5 RS-485 ON NuDAM .. 1-4
 1.6 NuDAM RS-485 NETWORK CONFIGURATIONS 1-5
 1.7 CONSTRUCTING A NuDAM NETWORK 1-7
 1.8 TERMINATION BUS .. 1-7
 1.9 SHIELDING .. 1-8
 1.10 HOW TO CALCULATE CHECKSUM VALUE 1-9

2. **NUDAM-6520** ... 2-1
 2.1 OVERVIEW .. 2-1
 2.2 SETUP ... 2-6
 2.3 INSTALLATION ... 2-8
 2.4 PROGRAMMING ... 2-9

3. **NUDAM-6510** ... 3-1
 3.1 OVERVIEW .. 3-1
 3.2 SETUP ... 3-5
 3.3 INSTALLATION .. 3-7
 3.4 PROGRAMMING .. 3-8

4. **INSTALL A BRAND-NEW NUDAM** 4-1
 4.1 INITIALIZE A BRAND-NEW NUDAM 4-1
 4.2 INSTALL A NEW NUDAM TO A EXISTING NETWORK 4-3

5. **SOFTWARE UTILITY** ... 5-1
 5.1 SOFTWARE INSTALLATION ... 5-1
 5.2 HOW TO EXECUTE THE NUDAM ADMINISTRATION 5-1
 5.3 NUDAM ADMINISTRATION FUNCTION OVERVIEW 5-2

6. **TROUBLESHOOTING AND MAINTENANCE** 6-1
1. Introduction

1.1 What is NuDAM?

NuDAM is a series of data acquisition modules. It provides a total solution of the data acquisition network and control system. You can remotely control up to 256 NuDAM modules on RS-485 network. All you need is to use a host computer, like PC (Personal Computer), with one RS-232 serial port for controlling the whole system. The maximum communication distance is 4000 feet from the host computer.

NuDAM is based on the RS-485 multi-drop network system, each module has an unique address ID. Using simple ASCII command & response protocol through standard RS-485 interface can control all the NuDAM modules in the RS-485 network.

The NuDAM modules provide direct linkage to a wide variety of sensors and perform all signal conditioning, scaling, linearization and conversion. The modules can be used to measure temperature, pressure, flow, voltage, current and numerous types of digital signals.

1.2 Outstanding Features of NuDAM

- **Industry standard networking**
 All NuDAM modules use the RS-485 communication protocol for transmitting and receiving at high rates and over long distance.

- **Two-wire and multi-drop communication**
 A single twisted pair of wires is used to transmit and receive data between modules. Multi-drop capability makes system configuration more flexible and easy set-up of a network.
• **High transfer speed**
 NuDAM modules provide up to 115.2K bps data / command transfer rate. It can promote system bandwidth.

• **Simple command / response protocol**
 All communications are performed with printable ASCII characters. This allows the information to be processed with string functions common to the most high-level languages.

• **Industrial design**
 The screw terminal plug connectors on every NuDAM module ensures simple installation and easy modification. The compact size allows the modules to be mounted on DIN rail, back-panel wall-mount, etc.

• **Watch-dog supervisory**
 NuDAM contains a watch-dog supervisory circuitry that will automatically reset the module when the system fails. In addition, a user-programmable software timer provides a ‘safe’ output signal in the event of host computer failure.

• **High isolation voltage**
 NuDAM provides photo-isolators, which ensure high isolation voltage, between the data acquisition circuits and the communication port. The fatal electric-shock won’t go through and damage all the modules on the network.

• **Noise immunity**
 The NuDAM provide extra noise immunity capability. An electrode, which is coated inside the ABS case, can reduce electro-magnetic interference (EMI) and noise.

• **Harsh environmental protection**
 A surface coating covers on the PCB and electronic components of the NuDAM. It allows superior resistance to harsh environment such as humidity, salt spry and most harsh chemicals.
1.3 **NuDAM-6000 series products overview**

The NuDAM-6000 series provides the complete sets of data acquisition modules, including the communication modules, the analog input modules, the analog output modules, and the digital I/O modules.

Communication Module
- NuDAM-6510 : RS-422/RS-485 Repeater
- NuDAM-6520 : RS-232 to RS-422/RS-485 Converter
- NuDAM-6530 : USB to RS-422/RS-485 Converter

Analog Input Modules
- NuDAM-6011 : Multifunction High Gain Analog Input Module(with DI/O)
- NuDAM-6011D: Multifunction High Gain Analog Input with 5½ digit LED Display(with DI/O)
- NuDAM-6012 : Analog Input Module(with DI/O)
- NuDAM-6012D : Analog Input Module with 5 1/2 digit LED Display(with DI/O)
- NuDAM-6013 : 3-channel RTD Input Module
- NuDAM-6014D : Analog (Transmitter) Input Module with 5 1/2 digit LED Display
- NuDAM-6017 : 8-channel Analog Input Module
- NuDAM-6018 : 8-channel Thermocouple Input Module

Analog Output Modules
- NuDAM-6021 : Single Channel Analog Output Module
- NuDAM-6024 : 4-channel Analog Output Module(with DI)

Digital I/O Modules
- NuDAM-6050 : Module with 7 DI channels and 8 DO channels
- NuDAM-6052 : Isolated Digital Input Module
- NuDAM-6053 : 16-channel digital Input Module
- NuDAM-6054 : 15-channel digital Input Module
- NuDAM-6056 : 15-channel digital Output Module
- NuDAM-6058 : 28-channel programable digital I/O Module
1.4 **EIA RS-485 Standard**

The EIA RS-485 interface is a communication standard developed for multi-dropped systems that can communicate at high rate over long distance. The standard RS-485 can operate at speed up to 10 M bps over cable length up to 4000 feet.

The RS-485 interface can support up to 32 drivers / receivers on the same line. This allows actual networking applications on a parity line system (sometimes called multi-drop).

The RS-485 uses differential transmission on a balance line. Its easy wiring make it popular to use in industrial applications.

1.5 **RS-485 on NuDAM**

The NuDAM improves the RS-485 capability for minimizing the user's cost. On each NuDAM module, a half-duplex RS-485 transceiver is used to communicate with other modules. A single twisted pair of wires, which provides standard differential transmission, is used to transmit and receive data between modules. The high input impedance of each NuDAM receiver allows up to 128 NuDAM modules on the same RS-485 bus without using a signal repeater.

The maximum transfer rate of NuDAM is 115.2Kbps which is lower than the maximum speed of the RS-485 standard. The slew-rate limiter on every RS-485 transceiver of NuDAM is very useful for transmitting error-free data, minimizing EMI, and reducing reflections caused by improperly terminated cables.

The NuDAM on a network may not use the same power supply. Therefore, the voltage difference between ground of the modules may exist.
Excessive output current and power dissipation caused by faults or by bus contention are prevented by the current limiter and the thermal shutdown circuitry inside the NuDAM.

1.6 **NuDAM RS-485 Network Configurations**

NuDAM-6000 series is designed under RS-485 multi-drop network architecture. Up to 256 NuDAM modules can be controlled in a multi-drop network. The limit of 256 is due to command code. The network can be connected by simple topology (Figure 1-1) or branch topology (Figure 1-2) or free topology (Figure 1-3).

The ND-6520 and ND-6510 are the two basic communication modules to construct a RS-485 network. The ND-6520 is a RS-232 to RS-485/RS-422 converter. The ND-6520 is used to build a RS-485 port for the host computer by converting standard RS-232 signal into RS-485 signal.

The ND-6510 is the RS-485 signal repeater which is used to extend or to lengthen the network distance. A NuDAM bus can connect up to 256 modules, each segment is up to 128 modules. Whenever the numbers of the modules exceed 128, the repeater should be used. In addition, the length of a standard RS-485 bus is up to 4000 feet, the repeater should be used whenever the length of a signal bus is more than 4000 feet.

![Figure 1-1 Simple Topology](image-url)
Figure 1-2 Branch Topology

Figure 1-3 Free Topology
1.7 Constructing a NuDAM Network

Go through the following steps, the user can construct a NuDAM network easily.

1. Setup a ND-6520.
2. Connect the host computer with the ND-6520.
3. Setup one or more ND-6510 if necessary.
4. Connect the ND-6510 to extend to RS-485 bus if necessary.
5. Install the NuDAM utility software from disk.
6. Initialize the brand-new NuDAM modules.
7. Add the new NuDAM modules into RS-485 network.

Refer to chapter 2 for executing step 1 and 2. Refer to chapter 3 for executing step 3, 4 and for understanding the time to install ND-6510. The knowledge about the software for operating the NuDAM is in chapter 5. For executing the step 6 and step 7, refer to chapter 4.

1.8 Termination Bus

In order to avoid signal reflections on the bus, each bus segment has to be blanked off at its physical beginning and at its end with the characteristic impedance. An termination resister (Rt) is installed for this purpose. The Rt value - 120Ω ± 2% is recommended, and the detailed connection of Rt can be referred from the “Terminator Connection” diagram below.

Terminator Connection
1.9. **Shielding**

In case of increased interference, a shielded bus cables is recommended to use for wiring between module and modules. In addition, a shielding also should be done for the cable of power supply and for the signal cables.

Some experiences and recommendations are concerning for shield connection.

1. The shield should be connected with protective earthing at each bus connection.

2. The shield should be applied additionally several times along the course of the cable.

3. The Computer should be applied the shield directly to the appliance or to separate shield rails.
1.10. How to Calculate Checksum Value

Format of NuDAM Commands

When checksum is enable then [Checksum] is needed, it is 2-character.

[Checksum] = ((LeadingCode)+(Addr)+(Command)+(Data)) MOD 0x100

Example 1: checksum is disable

User Command : $012<CR>
Response : !01400600

Example 2: checksum is enable

User Command : $012B7<CR>
Response : !01400600AC

‘$’ = 0x24 ‘0’ = 0x30 ‘1’ = 0x31 ‘2’ = 0x30

B7 = (0x24 + 0x30 + 0x31 + 0x32) MOD 0x100

‘!’ = 0x24 ‘0’ = 0x30 ‘1’ = 0x31 ‘4’ = 0x34
‘6’ = 0x36

AC = (0x24 + 0x30 + 0x31 + 0x34 + 0x30 + 0x30 + 0x36 + 0x30 + 0x30) MOD 0x100
2. **NuDAM-6520**

2.1. **Overview**

What is NuDAM-6520?

NuDAM-6520 is a RS-232 to RS-422/RS-485 converter, it converts the RS-232 signal to the RS-422/RS-485 signals. The ND-6520 can be considered as an extension RS-422/RS-485 serial port for the host computer. A standard 9-pin D-type connector is used to connect the host computer and the ND-6520. Hence, the ND-6520 can connect with all kinds the PC, IPC or Notebook PC, which install a standard RS-232 interface.

Features of NuDAM-6520

- RS-422/RS-485 transceiver
- Differential 2-wire half-duplex RS-485
- Easily setup and installation
- Auto direction flow control
- Maximum 128 NuDAM on a bus without using repeaters
- Maximum 256 addressable NuDAM modules
- High transfer speed
- High isolation voltage
- Lower power consumption
Specifications of NuDAM-6520

✧ Input
 • Interface: standard RS-232 9 pin female D-type connector
 • Speed (bps): 1200(115.2K1), 2400, 4800, 9600, 19.2K, 38.4K, RTS
 • Data Format: 9 bits, 10 bits, 11 bits, or 12 bits

✧ Output
 • Interface: RS-485, differential, 2 half-duplex wires
 RS-422, differential, 4 full-duplex wires
 • Speed (bps): 1200(115.2K1), 2400, 4800, 9600, 19.2K, 38.4K, RTS
 • Max RS-485 network bus distance: 4000 ft. (1200m)

✧ Isolation
 • Isolation voltage: 5000 Vrms (between RS-422/RS-485 network and host computer)

✧ Bus
 • Max loading: 128 NuDAMs on a RS-485 network
 • Max modules: 256 NuDAMs with one ND-6510 repeater

✧ Power
 • Power Supply: +10V to +30V
 • Power Consumption: 0.95 W

Note 1: 115.2K is supported by version A1.2 or later.
A Look at NuDAM-6520 & Pin Assignment

<table>
<thead>
<tr>
<th>Switch Position</th>
<th>Baud Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW1: ON</td>
<td>RTS CTRL</td>
</tr>
<tr>
<td>SW2: ON</td>
<td>115.2K bps</td>
</tr>
<tr>
<td>SW3: ON</td>
<td>2400 bps</td>
</tr>
<tr>
<td>SW4: ON</td>
<td>4800 bps</td>
</tr>
<tr>
<td>SW5: ON</td>
<td>9600 bps</td>
</tr>
<tr>
<td>SW6: ON</td>
<td>19.2K bps</td>
</tr>
<tr>
<td>SW7: ON</td>
<td>38.4K bps</td>
</tr>
</tbody>
</table>
Pin Definitions

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Signal Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Y)DATA+</td>
<td>RS-485 transmission line, positive</td>
</tr>
<tr>
<td>2</td>
<td>(G)DATA-</td>
<td>RS-485 transmission line, negative</td>
</tr>
<tr>
<td>4</td>
<td>TX+</td>
<td>RS-422 transmission line, positive</td>
</tr>
<tr>
<td>5</td>
<td>TX-</td>
<td>RS-422 transmission line, negative</td>
</tr>
<tr>
<td>6</td>
<td>RX+</td>
<td>RS-422 receiving line, positive</td>
</tr>
<tr>
<td>7</td>
<td>RX-</td>
<td>RS-422 receiving line, negative</td>
</tr>
<tr>
<td>9</td>
<td>(R)+VS</td>
<td>NuDAM power supply, +10V~+30V</td>
</tr>
<tr>
<td>10</td>
<td>(B)GND</td>
<td>NuDAM ground</td>
</tr>
<tr>
<td>--</td>
<td>RS-232 IN</td>
<td>9-pin RS-232 connector</td>
</tr>
</tbody>
</table>

Connection Between Host and ND-6520

Host RS-232
- RTS
- GND
- TXD
- RXD

ND-6520 RS-232
- RTS
- GND
- TXD
- RXD

NuDAM-6520 RS-232/RS-485 Converter
- DATA +
- DATA -
- +Vs
- GND
Functional Block Diagram

- **Power Regulator**
 - Power Input: +10V ~ +30V
 - DC to DC Converter
 - +5V Isolation

- **Communication Controller**
 - RTS
 - TXD
 - RXD
 - GND

- **RS-232 Receiver/Driver**
 - TXD
 - RXD
 - RTS

- **RS-422/RS-485 Receiver/Driver**
 - Data+
 - Data-
 - Rx+
 - Rx-
 - Tx+
 - Tx-

- **Opto-Isolation Switch**
 - SW1

- **TVS** (Transient Voltage Suppressor)
- **PTC** (Positive Temperature Coefficient)

TVS: Transient Voltage Suppressor
PTC: Positive Temperature Coefficient
2.2. Setup

Objective of Setup

In normal condition, it is not necessary to setup the NuDAM-6520. The default configuration of this communication module is 9600 bps and data format of 8 data bits with 1 start bit, 1 stop bit, and no parity check. Note that the data format is reserved to be compatible with other brand's communication port, it should not be modified if only NuDAM is used in a system. The baud rate can be configured according applications' requirement.

Setup Equipments

Only screw driver is used to open the case. Software, power supply, and wiring are not necessary.

Setup Procedure

Only hardware switch setting can be setup in ND-6520. The user can set the speed of the serial interface (RS-232 and RS-422/RS-485), and the serial data format. The speed and the data format on the whole RS-485 network must be identity otherwise the communication will be not correct.

To setup the ND-6520, use the screw driver to open the case, then change the switch setting. The new setting is available after power on. The case must be put back and locked carefully. Note that do not scratch the surface of the circuit while setting up, otherwise the surface coating or even the circuits will be damaged.

Default Setting

- 9600 baud rate
- 10 bits series data format: one start bit, eight data bits, one stop bit, no parity check

SW1 Setting
SW1 Default Setting (9600 bps)

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>Baud Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>RTS Control</td>
</tr>
<tr>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>1200 or 115.2kbps</td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>2400 bps</td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>4800 bps</td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>9600 bps</td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>19200 bps</td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>38400 bps</td>
</tr>
</tbody>
</table>

Note 1: 115.2kbps is supported by version A1.2 or later.

SW2 Setting

SW2 Default Setting

- Start Bits : 1
- Data Bits : 8
- Stop Bits : 1
- Parity : None

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.3. Installation

Software Utility

Software is not necessary for this module.

Equipments for Installation

A host computer with RS-232 port
RS-232 cable (DB-9 female)
DC Power supply (+10V~+30V) (NDP-243u is recommended)
Wires (shielded and grounded is recommended)

Installation Procedure

1. Make sure the host computer is power off.
2. Use RS-232 cable to connect NuDAM-6520 with host computer.
3. Wire the power supply to NuDAM. Note that the power supply should meet the specification.
4. Wire other NuDAMs.

Application Wiring

The Figure 2-1 shows the application wiring of NuDAM-6520.
2.4 Programming

The NuDAM-6520 is a communication module, it is not necessary to be programmed.
3. **NuDAM-6510**

3.1. **Overview**

What is NuDAM-6510?

The ND-6510 is the RS-422/RS-485 signal repeater which is used to extend or to lengthen the network distance. A NuDAM bus can connect up to 128 modules. The repeater should be used when the numbers of the modules exceed 128. In addition, the repeater should also be used when the length of a signal bus is more than 4000 feet.

Features of NuDAM-6510

- RS-422/RS-485 signal transceiver & repeater
- Bi-directions signal transmission for both RS-422/RS-485 ports
- Automatic transmission direction control
- Easily setup and installation
- Maximum 128 NuDAM on a bus
- Maximum 256 addressable NuDAM modules
- High transfer speed
- Surge protection
- Lower power consumption

Specifications of NuDAM-6510

✧ **Input / Output**

- Interface : RS-485, differential 2 half-duplex wires
 RS-422, differential, 4 full-duplex wires
- Speed (bps) : 1200(115.2K)¹⁾, 2400, 4800, 9600, 19.2K, 38.4K
- Data Format : 9 bits, 10 bits, 11 bits, or 12 bits
- Max RS-485 network bus distance : 4000 ft. (1200m)

¹ Note 1: 115.2k is supported by version A1.2 or later.

✧ **Bus**
• Max Loading: 128 NuDAMs on a bus

✧ **Power**
• DC Power Supply: +10V to +30V
• Power Consumption: 0.9 W

A Look at NuDAM-6510 & Pin Assignment

<table>
<thead>
<tr>
<th>Switch Position</th>
<th>Band Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW1-1: ON</td>
<td>115.2 Kbps</td>
</tr>
<tr>
<td>SW1-2: ON</td>
<td>2400 bps</td>
</tr>
<tr>
<td>SW1-3: ON</td>
<td>4800 bps</td>
</tr>
<tr>
<td>SW1-4: ON</td>
<td>9600 bps</td>
</tr>
<tr>
<td>SW1-5: ON</td>
<td>19.2 Kbps</td>
</tr>
<tr>
<td>SW1-6: ON</td>
<td>38.4 Kbps</td>
</tr>
</tbody>
</table>
Pin Definitions

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Signal Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Y)DATA+</td>
<td>RS-485 transmission line, positive</td>
</tr>
<tr>
<td>2</td>
<td>(G)DATA-</td>
<td>RS-485 transmission line, negative</td>
</tr>
<tr>
<td>4</td>
<td>TXIN+</td>
<td>RS-422 transmission input line, positive</td>
</tr>
<tr>
<td>5</td>
<td>TXIN-</td>
<td>RS-422 transmission input line, negative</td>
</tr>
<tr>
<td>6</td>
<td>RXOUT+</td>
<td>RS-422 receiving output line, positive</td>
</tr>
<tr>
<td>7</td>
<td>RXOUT-</td>
<td>RS-422 receiving output line, negative</td>
</tr>
<tr>
<td>9</td>
<td>(R)+VS</td>
<td>NuDAM power supply, +10V~+30V</td>
</tr>
<tr>
<td>10</td>
<td>(B)GND</td>
<td>NuDAM ground</td>
</tr>
<tr>
<td>14</td>
<td>RXIN-</td>
<td>RS-422 receiving input line, negative</td>
</tr>
<tr>
<td>15</td>
<td>RXIN+</td>
<td>RS-422 receiving input line, positive</td>
</tr>
<tr>
<td>16</td>
<td>TXOUT-</td>
<td>RS-422 transmission output line, negative</td>
</tr>
<tr>
<td>17</td>
<td>TXOUT+</td>
<td>RS-422 transmission output line, positive</td>
</tr>
<tr>
<td>19</td>
<td>(G)DATA-</td>
<td>RS-485 transmission line, negative</td>
</tr>
<tr>
<td>20</td>
<td>(Y)DATA+</td>
<td>RS-485 transmission line, positive</td>
</tr>
</tbody>
</table>
ND-6510 Functional Block Diagram

Power Input +10V ~ +30V

Power Regulator & Filter

+5V

GND

TVS: Transient Voltage Suppressor
PTC: Positive Temperature Coefficient

Data+
Data-
Rx+
Rx-
Tx+
Tx-

RS-422/RS-485 Receiver/Driver

Communication Switching Controller

Communication Direction Control

RS-422/RS-485 Receiver/Driver
3.2. Setup

Objective of Setup
In normal condition, it only needs to setup the NuDAM-6510 when the NuDAM bus with more than 128 modules or the distance exceeds 4000 feet long. The default configuration of this communication module is 9600 bps and data format of 8 data bits with 1 start bit, 1 stop bit, and no parity check. Note that the data format is reserved to be compatible with other brand's communication port, it should not be modified if only NuDAM is used in a system. The baud rate can be configured according user's requirement.

Setup Equipments
Only screw driver is used to open the case. Software, power supply, and wiring are not necessary.

Setup Procedure
Only hardware switch setting can be setup in ND-6510. The user can set the speed and the data format of the RS-422/RS-485 interface. The speed and the data format on the whole network must be identity otherwise the communication may be not correct.

To setup the ND-6510, use the screw driver to open the case, then change the switch setting. The new setting is available after power on. The case must be put back and locked carefully. Note that do not scratch the surface of the circuit while setting up, otherwise the surface coating or even the circuits will be damaged.

Default Setting
- 9600 Baud rate
- 10 bits serial data format : one start bit, eight data bits, one stop bit, no parity check
SW1 Setting

SW1 Default Setting (9600 bps)

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Baud Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>1200 or 115.2k bps</td>
</tr>
<tr>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>2400 bps</td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>4800 bps</td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>9600 bps</td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>19200 bps</td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>38400 bps</td>
</tr>
</tbody>
</table>

Note 1: 115.2kbps is supported by version A1.2 or later.

SW2 Setting

SW2 Default Setting

- **Start Bits**: 1
- **Data Bits**: 8
- **Stop Bits**: 1
- **Parity**: None

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>Start Bit</th>
<th>Data Bits</th>
<th>Stop Bit</th>
<th>Parity</th>
<th>Packet Data Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>OFF</td>
<td>ON</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td>OFF</td>
<td>1</td>
<td>9</td>
<td>1</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>1</td>
<td>10</td>
<td>1</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
3.3 Installation

Software Utility

Software is not necessary.

Equipments for Installation

A 2-wire RS-485 network or 4-wire RS-422 network.
DC Power supply (+10V~+30V)
Wires

Installation Procedure

1. Make sure the original RS-422/RS-485 network is power off.
2. Wire the power supply to NuDAM-6510. Note that the power supply should meet the specification.
3. Wire other NuDAMs to the extend RS-485 bus.
3.4 Programming

The NuDAM-6510 is a communication module, it is not necessary to be programmed.
4. Install a Brand-New NuDAM

4.1 Initialize a Brand-New NuDAM

Objective of Initializing a Brand-New NuDAM

All NuDAM modules, except ND-6520 and ND-6510, in a RS-485 network must have an unique address ID, however, every brand-new NuDAM has a factory default setting as following:

- Baud rate is 9600 bps.
- Address ID is 01.
- Checksum is disable.
- Host watchdog timer is disable.

Therefore, to configure the brand-new NuDAM before using is necessary, otherwise the address ID will conflict with others. The baud rate may also be changed according to user's requirements.

The following initialization procedures are need not only for a brand-new module, but also for a installed NuDAM module. When the user want to change the setting, the initialization procedure can also be used.

Initial State

The NuDAM I/O modules must be set a Initial State when you want to change the default settings of the modules, such as the ID address, baud rate, check-sum status etc. All NuDAM I/O modules have an special pin labeled as **Default**. “The module will be set as Initial State if the Default* pin is shorted to ground.”

Under this state, the default configuration is set as following:

- Address ID is 00.
- Baud rate is 9600 bps.
- Checksum is disable.
- Host watchdog timer is disable.

Initialization Equipments

- Host computer with an RS-232 port.
- An installed RS-485 module (NuDAM-6520) with 9600 baud rate.
- The brand new NuDAM module
- DC Power supply (+10 to +30 V\textsubscript{DC}) for NuDAM modules
- A NuDAM-6510 if the connection distance is more than 4000 ft.

Initialization Procedure A

--- As Baud rate is 9600 bps and check-sum is disable

1. Power off the host computer and the installed ND-6520. Ensuring the baud rate of the ND-6520 is 9600 bps.
2. Connect a brand new NuDAM module with the RS-485. Refer to Figure 4.1 for detail wiring.
3. Power on the host computer.
4. Power on the power supply for NuDAM modules.
5. Use the NuDAM Administrating utility to configure the address ID, Baud rate and check-sum status of the module.

Initialization Procedure B

--- As Baud rate is not 9600 bps or check-sum is not disable

1. Power off the host computer and the installed ND-6520.
2. Connect a brand new NuDAM module with the RS-485. Refer to Figure 4.1 for detail wiring.
3. Configure the ND-6520 to Baud rate 9600 bps.
4. Short the DEFAULT* pin of the brand-new module.
5. Power on the host computer.
6. Power on the power supply for NuDAM modules.
7. Use the NuDAM Administrating utility to configure the address ID, Baud rate and check-sum status of the module.
8. Power of the local power supply.
9. Disconnect the DEFAULT* pin.
10. Configure the ND-6520 to desired Baud rate.
11. Power on the local power supply
12. Use NuDAM Administration utility to check the module's new setting.
4.2 Install a New NuDAM to a Existing Network

Equipments for Install a New Module

- A existing NuDAM network
- New NuDAM modules.
- DC Power supply (+10 to +30 VDC).

Installing Procedure

1. Configure the new NuDAM module according the initialization procedure in section 4.1.
2. The baud rate and check-sum status must be identity with the existing RS-485 network. The address ID must not be conflict with other NuDAM modules.
3. Power off the NuDAM local power supply of the existing RS-485 network.
4. Power off the host computer.
5. Add the new module to the existing RS-485 network.
6. Power on the host computer.
7. Power on the NuDAM local power supply.
8. Use the NuDAM administration utility to check entire network.
5. Software Utility

5.1 Software Installation

1. Insert “ADLink All-in-one CD” into your CDROM driver.
2. Move cursor on NuDAM and click.
3. Move cursor on NuDAM 6000 Admin Utility and click.
4. Select the driver you want to install and follow the setup instructions on screen.

5.2 How to Execute the NuDAM Administration

What environment you needed?

1. At least one RS-232 communication port.
2. Microsoft Windows(version 3.1, 95/98/NT)
3. At least 2MB Hard Drive Space
4. A VGA monitor(optional)
5. Mouse (optional)

Execute the NuDAM Administration Utility

- Run “NuDAM Administration Utility” Icon.
5.3 NuDAM Administration Function Overview

Default RS-232 Communication Port Setting.

- Communication Port: COM2
- Baud Rate: 9600
- Data Bits: 8
- Stop Bits: 1
- Parity: None

5.3.1 Change RS-232 Communication Port Setting.

Choose “Network-ComPort” to change setting.
5.3.2 Search all exist Nudam modules

Choose “Network-Search” to search all exist Nudam modules in the current RS-485 network.

You can change search addresses range from here.

5.3.3 Using Operations
Operation-Terminal: Terminal Emulation, user can input command and get response message.
Operation-Configuration: Select one exist NuDAM module and select Configuration to do this module's common and private setting.
Operation-Monitor: Monitor all the module's function on the network.
Operation-Diagnostic: Diagnostic module's function.
Operation-Calibration: Some A/D modules need do calibration.
Operation-Model Number: Select Model Number.

Term ICON for Operation-Terminal

5-4 Software Utility
You can remote control all modules by directly using command mode, or testing your from this Terminal.

Operation-Run Batch : Run batch command file in BATCH.CMD user can edit this text file.
Operation-Step Batch : Run the batch command step by step.
Operation-Display Batch: Display content of BATCH.CMD
Operation-Repeat : Repeat one command n times

Diag ICON for Operation-Diagnostic
This dialog is different by different-fuction modules.
Module: ND-6058 F/W Rev.: A1.50
Address: 1 (01H)

Port A (input)

Port B (input)

Port CH (output) Port CL (output)

Digital Input

3 2 1 0

Exit

5-6 Software Utility
Cal ICON for Operation-Calibration
This dialog is different by different function modules.

5.3.4 Save and Print Nudam modules’ information
File-Save : Save all exist NuDAM modules information as display as in the listbox in the current RS-485 network.
File-Print : Print the NuDAM module information in the listbox.
File-Exit : Quit the NuDAM Administration Utility.

5.3.5 Version Information
Help-About

Version information

![Software Utility Image]

<table>
<thead>
<tr>
<th>Address</th>
<th>Model HighLimit</th>
<th>LowLimit</th>
<th>Format</th>
<th>Alarm</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(01H)</td>
<td>6058</td>
<td></td>
<td></td>
<td></td>
<td>Digital I/O</td>
</tr>
</tbody>
</table>

About NuDAM Administration Utility

NuDAM Administration Utility for Windows 95/NT

Version 3.2

Copyright(C) 1995-1999 ADLink Technology Inc.

[OK]
6. Troubleshooting and Maintenance

Preventive Maintain

- Periodic check for loose connection

ATTENTION: To avoid electrical shock or unintended operation of the module, remove incoming power before checking connections.

Using the LED Indication

The LED provides status information on Modules operation. The troubleshooting about shows LED indicator. It also shows how to use the LED to detect and correct common operating problems.

<table>
<thead>
<tr>
<th>LED</th>
<th>What it Means:</th>
<th>What to do:</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>1. Module is not receiving input power by loosening wiring.</td>
<td>1. Check module wiring, cable connections, and cable connections on terminal block.</td>
</tr>
<tr>
<td>ON(RED)</td>
<td>1. Normal receiving state.</td>
<td>1. No action required.</td>
</tr>
<tr>
<td>Flashing</td>
<td>1. Normal transmitting state.</td>
<td>1. No action required.</td>
</tr>
</tbody>
</table>

Other Malfunctions

<table>
<thead>
<tr>
<th>Problem</th>
<th>What it Means:</th>
<th>What to do:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not function</td>
<td>1. Loose wiring</td>
<td>1. Check wiring and cable connection</td>
</tr>
<tr>
<td></td>
<td>2. Incorrect DIP switch setting</td>
<td>2. Check Baudrate and data packet setting of the DIP switch.</td>
</tr>
</tbody>
</table>