

32-bit ActiveX Controls for
Measurement and Automation

User’s Guide

©Copyright 1998~2001 ADLINK Technology Inc.

All Rights Reserved.

Manual Rev: 2.30: November 15, 2001

Part No: 50-10015-103

The information in this document is subject to change without prior notice
in order to improve reliability, design and function and does not represent a
commitment on the part of the manufacturer.

In no event will the manufacturer be liable for direct, indirect, special,
incidental, or consequential damages arising out of the use or inability to
use the product or documentation, even if advised of the possibility of such
damages.

This document contains proprietary information protected by copyright. All
rights are reserved. No part of this manual may be reproduced by any
mechanical, electronic, or other means in any form without prior written
permission of the manufacturer.

Trademarks

NuDAQ, NuDAQ, DAQBench series product are registered trademarks of
ADLINK Technology Inc. IBM PC is a registered trademark of
International Business Machines Corporation. Other product names
mentioned herein are used for identification purposes only and may be
trademarks and/or registered trademarks of their respective companies.

Getting Service from ADLINK
• Customer Satisfaction is always the most important thing for ADLINK

Tech Inc. If you need any help or service, please contact us and get it.
ADLINK Technology Inc.

Web Site http://www.adlinktech.com

Sales & Service service@adlinktech.com
Technical NuDAQ + USBDAQ nudaq@ADLINK.com.tw
Support NuDAM nudam@ADLINK.com.tw
 NuIPC nuipc@ADLINK.com.tw
 NuPRO nupro@ADLINK.com.tw
 Software sw@ADLINK.com.tw
TEL +886-2-82265877 FAX +886-2-82265717
Address 9F, No. 166, Jian Yi Road, Chungho City, Taipei, 235 Taiwan, R.O.C.

• Please inform or FAX us of your detailed information for a prompt,
satisfactory and constant service.

Detailed Company Information
Company/Organization
Contact Person
E-mail Address
Address
Country
TEL FAX
Web Site

Questions
Product Model

OS:
Computer Brand:

Environment to Use

M/B: CPU:
Chipset: BIOS:
Video Card:
Network Interface Card:
Other:

Challenge Description

Suggestions for ADLINK

Table of Contents • i

Table of Contents

Chapter 1 Introduction to DAQBench1

1.1 What is DAQBench? ...1
1.2 Installing DAQBench ..3

1.2.1 System Requirements ..3
1.2.2 Installation Instructions..3
1.2.3 Installed Files ...4

1.3 Getting Help ..5
1.4 About the DAQBench Controls...5

1.4.1 Properties, Methods, and Events ..5
1.4.2 Object Hierarchy ..6

1.5 Setting the Properties of an ActiveX Control8
1.5.1 Using Property Pages...8
1.5.2 Changing Properties Programmatically...............................9

1.6 Using Control Methods ...11
1.7 Developing Event Handlers...11
1.8 Using the Analysis Library..12

Chapter 2 DAQBench Applications...13

2.1 Measurement Applications..13
2.2 HMI/Automation Applications..14

Chapter 3 Building DAQBench Applications with
 Visual Basic..17

3.1 Developing Visual Basic Applications..17

ii • Table of Contents

3.1.1 Adding the DAQBench Controls to a Project’s Toolbox17
3.1.2 Building the User Interface Using DAQBench18
3.1.3 Setting Properties at Design Time18
3.1.4 Edit Properties at Runtime ...20
3.1.5 Working with Control Methods...21
3.1.6 Developing Control Event Procedures22
3.1.7 Learning to Use Specific DAQBench Controls...................23

Chapter 4 Building DAQBench Applications with
 Visual C++ ...24

4.1 Developing Visual C++ Applications..24
4.1.1 Creating Your Application in Visual C++..........................25
4.1.2 Adding DAQBench Controls to the Visual C++

Controls Toolbar...26
4.1.3 Building the User Interface Using DAQBench Controls26
4.1.4 Programming with the DAQBench Controls27
4.1.5 Using Properties...28
4.1.6 Using Methods..31
4.1.7 Using Events ...31
4.1.8 DAQBench Enhancements in Visual C++..........................32

Chapter 5 Building DAQBench Applications with Delphi35

5.1 Upgrading from a Previous Version of DAQBench........................35
5.2 Developing Delphi Applications ...36

5.2.1 Loading the DAQBench Controls into the

Component Palette..36
5.2.2 Building the User Interface...39

Table of Contents • iii

5.2.3 Programming with DAQBench...41

Chapter 6 Introducing the DAQBench ActiveX Controls44

6.1 User Interface Controls..44
6.1.1 DBoolean Control...44
6.1.2 DSlide Control ..46
6.1.3 DKnob Control ...46
6.1.4 D7Segment Control ..47
6.1.5 DLEDMeter Control ...47
6.1.6 DGraph Control..48
6.1.7 DChart Control...49
6.1.8 DXYGraph Control...51
6.1.9 DIntenGraph Control ...52
6.1.10 DIntenChart Control ..53
6.1.11 DDE/NetDDE Function..55

6.2 Information Integration Controls...59
6.2.1 ExcelLinker Control..59
6.2.2 WebSnapshot Control ...61
6.2.3 DBAccess Controls ...63
6.2.4 OPCClient Control ...65
6.2.5 Thermocouple Control..68

6.3 Analysis Control..69
6.4 SCADA Controls and Utilities ..69

6.4.1 Tag Server and Tag Configuration Utility..........................69
6.4.2 Alarm Controls ...70
6.4.3 Trend Controls..70
6.4.4 Report Controls ..70

iv • Table of Contents

6.4.5 Tag Control...71
6.4.6 Equipment Controls ..71

Chapter 7 Distribution of Applications73

Warranty Policy ..74

How to Use This Guide • v

How to Use This Guide

This manual is designed to help you use the DAQBench software for
developing your measurement or automation applications. The manual
describes how to install and use the software to meet your requirements and
help you program your own software applications.

The DAQBench User’s Guide is organized as follows:

• Chapter 1, “Introduction to DAQBench”, contains an overview of

DAQBench, lists the DAQBench system requirements, describes

how to install the software, and explains the basics of ActiveX

controls.

• Chapter 2, “DAQBench Applications”, describes how you can use

DAQBench controls to develop your measurement or automation

applications.

• Chapter 3, “Building DAQBench Applications with Visual

Basic”, describes how you can use DAQBench controls with Visual

Basic; insert the controls into the Visual Basic environment, set their

properties, and use their methods and events; and perform their

operations using ActiveX controls in general. This chapter also

outlines Visual Basic features that simplify working with ActiveX

controls.

vi • How to Use This Guide

• Chapter 4, “Building DAQBench Applications with Visual C++”,

describes how you can use DAQBench controls with Visual C++,

explains how to insert the controls into the Visual C++ environment

and create the necessary wrapper classes, shows you how to create

an application compatible with the DAQBench controls using the

Microsoft Foundation Classes Application Wizard (MFC

AppWizard) and how to build your program using the ClassWizard

with the controls, and discusses how to perform these operations

using ActiveX controls in general.

• Chapter 5, “Building DAQBench Applications with Delphi”,

describes how you can use DAQBench controls with Delphi; insert

the controls into the Delphi environment, set their properties, and

use their methods and events; and perform these operations using

ActiveX controls. This chapter also outlines Delphi features that

simplify working with ActiveX controls.

• Chapter 6, “Introducing the ActiveX Controls of DAQBench”,

simply describes all ActiveX controls of DAQBench; explains the

individual controls, their object structure and different style of

control.

• Chapter 7, “Distribution of Applications”, direct you how and

where to know the policy and information of distribution of

applications.

Introduction to DAQBench • 1

1

Introduction to DAQBench

This chapter contains an overview of DAQBench, lists the DAQBench
system requirements, describes how to install the software, and explains the
basics of ActiveX controls.

1.1 What is DAQBench?

DAQBench is a collection of ActiveX controls for measurement or
automation applications. With DAQBench, you can easily develop custom
user interfaces to display your data, analyze data you acquired or received
from some other sources, and integrate with popular applications or data
sources. Also you can develop automation or distributed applications with
its SCADA functionality.

The DAQBench ActiveX controls are designed for use in Visual Basic.
However, you can use ActiveX controls in any application that supports
them, including Visual C++, Borland C++ Builder, and Delphi.

Currently DAQBench includes the following modules:

 User Interface Controls – Present your data. These controls include
graphs, charts, sliders, thermometers, tanks, knobs, seven segment
display, meters, and switches.

 Information Integration Controls – Integrate your information with
Web, Excel, database; acquire data from OPC servers. These controls
include Excel linker, Database access for ODBC, Web snapshot for
browser, OPC client for OPC server, and Thermocouple.

2 • Introduction to DAQBench

 Analysis Library Control – Functions for basic statistics, vector and
matrix algebra , array manipulations and FFT operation. These
functions are packaged in one 32-bit ActiveX control.

 SCADA Controls and Utilities

Tag server and utility – A data center that communicates with OPC
servers, processes alarm, and logs data.

Historical and real-time trends.

Alarm Controls – Alarm display and Acknowledgement button.

Report Controls – Alarm or data reporting

Equipment Controls – Display some popular equipment patterns in
industry automation. These patterns are convenient to develop a HMI
or SCADA system.

Please use the online help or reference manuals for specific information
about the properties, methods, and events of the individual ActiveX
controls.

Introduction to DAQBench • 3

1.2 Installing DAQBench

1.2.1 System Requirements

♦ Microsoft Windows 95/98/NT/2000 operating system

♦ Personal computer using 66 MHz 80486 or higher microprocessor

♦ VGA resolution (or higher) video adapter

♦ ActiveX control container such as Visual Basic (32-bit version), Visual

C++, or Delphi (32-bit version)

♦ Minimum of 64MB of memory

♦ Minimum of 20MB of free hard disk space

♦ Microsoft-compatible mouse

1.2.2 Installation Instructions

This section provides instructions for installing different pieces of your
DAQBench software. You can start most of these installers directly from
the startup screen that appears when you load the ADLINK DAQBench
CD.

Installing DAQBench

Note: To install DAQBench on a Windows NT/2000 system, you must be

logged in with Administrator privileges to complete the

installation.

Complete the following steps to install DAQBench or the separate ActiveX
modules.

Insert the ADLINK DAQBench CD in the CD-ROM drive of your
computer. From the CD startup screen, click on Install DAQBench. If the
CD startup screen does not appear, use the Windows Explorer or File

4 • Introduction to DAQBench

Manager to run the x:\SETUP.EXE (x identifies the drive that contains the
CD).

1.2.3 Installed Files

The setup program installs the following groups of files on your hard disk.
ActiveX controls

 Directory: Windows system directory
(\Windows\system for Windows 95/98)
(\Windows\system32 for Windows NT/2000)

Example programs
 Directory: \DAQBench\Samples\VB
 \DAQBench\Samples\VC
 \DAQBench\Samples\BCB

PDF Manual Files
 Directory: \DAQBench\Manual
One-line Help Files

 Directory: Windows system directory

Utility Files
 Directory: \DAQBench\Util
VC++ Data Type Wrapping Library Files

 Directory: \DAQBench\Varpacker
Tag server and utilities

 Directory: \DAQBench\Tag

Introduction to DAQBench • 5

1.3 Getting Help

In addition to this manual, the following sources can provide you with more
information about DAQBench:

 DAQBench Function Reference – The manual contains the complete
reference information for the DAQBench controls. You can access the
PDF file on the ADLINK DAQBench CD, or from the Windows Start
menu Programs>>DAQBench>>DAQBench Function Reference

 DAQBench online reference – The help contains the complete
reference information for the DAQBench controls. You can access the
help from the Windows Start menu
Programs>>DAQBench>>DAQBench Online Help. You also can
open the online reference from within most programming
environments by clicking on the Help button in the custom property
pages of a DAQBench control

 Examples – We provide Visual Basic, Visual C++, and C++ Builder
example programs. The installer copies the example programs to
DAQBench\Samples

1.4 About the DAQBench Controls

Before learning how to use DAQBench, you should be familiar with using
ActiveX controls. This section outlines some background information
about ActiveX controls, in particular the DAQBench controls. If you are not
familiar with the concepts outlined in this section, make sure you
understand them before continuing. You also might want to refer to your
programming environment documentation for more information on using
ActiveX controls in your particular environment.

1.4.1 Properties, Methods, and Events

ActiveX controls consist of three different parts — properties, methods, and
events — used to implement and program the controls.

Properties are the attributes of a control. These attributes describe the
current state of the control and affect the display and behavior of the control.
The values of the properties are stored in variables that are part of the
control.

6 • Introduction to DAQBench

Methods are functions defined as part of the control. Methods are called
with respect to a particular control and usually have some effect on the
control itself. The operation of most methods also is affected by the current
property values of the control.

Events are notifications generated by a control in response to some
particular occurrence. The events are passed to the control container
application to execute a particular subroutine in the program (event
handler).

For example, the DAQBench DGraph control has a wide variety of
properties that determine how the graph looks and operates. To customize
the graph appearance and behavior, set properties for color, axes, scale, tick
marks, and plots.

The DGraph control also has a series of methods, or functions, that you can
invoke to perform a particular operation. For example, you can use the
PlotGraph method to pass an array of data to the DGraph control for
drawing.

1.4.2 Object Hierarchy

As described in the previous section, each ActiveX control has properties,
methods, and events. Certain ActiveX controls are very complex,
containing many different properties. Therefore, complex ActiveX controls
are often subdivided into different software objects, the sum of which make
up the ActiveX control. Each individual object in a control contains some
specific properties of the ActiveX control. The relationships between
different objects of a control are maintained in an object hierarchy. At the
top of the hierarchy is the actual control itself.

This top-level object contains its own properties, methods, and events.
Some of the top-level object properties are actually reference to other
objects that define specific parts of the control.

Introduction to DAQBench • 7

The following illustration shows part of the object hierarchy of the
DAQBench DSlide control.

The DSlide object contains some of its own properties, such as Name and
BackColor. It also contains properties such as Axis and Pointers, which are
separate objects from the DSlide object. The Axis object contains all the
information about the axis used on the slide and has properties such as
Maximum and Minimum. The Axis object contains Ticks object of its own.
Ticks object has properties, such as MajorMark, MajorColor, MinorMark,
MinorColor. The DSlide object contains eight Pointer objects. Each Pointer
object has its own properties, such as Value, Style, FillColor.

Dslide control
Name: Dslide1

BackColor: Blue

Axis object
Minimum: 0

Maximum: 10

Ticks object
MajorMark:

True

 Pointer object
Value: 4.2

(8 Pointer objects)

8 • Introduction to DAQBench

1.5 Setting the Properties of an ActiveX Control

You can modify the properties of an ActiveX control from its property
pages or directly from the program.

1.5.1 Using Property Pages

Once you place the control on a form in your programming environment,
right click on the control and select Properties... A custom property page
appears with a variety of properties that you can set to customize the
appearance and operation of the control.

Use the property pages to set the property values for each ActiveX control
at design time. The property values you select at this point represent the
state of the control at the beginning of your application.

The layout and functionality of the custom property pages vary for different
controls. The following illustration shows the custom property page for the
DGraph control.

DAQBench Custom Property Pages

In some programming environments (such as Visual Basic and Delphi), you
have two different property pages. The property page common to the
programming environment is called the default property sheet; it contains
the most basic properties of a control.

Introduction to DAQBench • 9

The following illustration shows the Visual Basic default property sheet for
the DGraph control.

Visual Basic Default Property Sheets

1.5.2 Changing Properties Programmatically

You can also set or read the properties of your controls programmatically.
The syntax for reading and writing property values depends on your
programming language, so consult the appropriate section of the Help
system for using your programming environment. In this discussion,
properties are set with Visual Basic syntax, which is similar to most
programming languages.

You can set the value of a property on a top-level object with the following
syntax.

object.property = expression

10 • Introduction to DAQBench

For example, you can change the Value property of a DBoolean control to
off by using the following line of code, where DBoolean1 is the default
name of the DBoolean control.

DBoolean1.Value = 0

To access properties of sub-objects referenced by the top-level object, use
the control name, followed by the name of the sub-object and the property
name. For example:

DGraph1.XAxis.ScrollBar = True

In the above code, XAxis is a property of the DGraph control and refers to
an Axis object. ScrollBar is one of Axis properties. The DGraph control
also has a YAxis property that refers to a different Axis object.

You can get the value of a property from your program. In most case, to get
the value of a property, you use the following syntax:

Variable = object.property

For example, you can display the ViewNumber used by the DGraph
control with the following code.

Text1.Text = DGraph1.YAxis.ViewNumber

Introduction to DAQBench • 11

1.6 Using Control Methods

ActiveX controls and objects have their own methods, or functions, that you
can call from your program. Methods can have arguments that you pass to
the method, and return values that pass information back to your program.
To call a method, add the name of the method after the name of the control.
When a method doesn’t take arguments, you call the method using the
following syntax:

object.method

For example, the ClearPlots method clears the drawing area of a
DChart control.

DChart1.ClearPlots

Methods can have arguments that you pass to the method, and return values
that pass information back to your program. For example, the PlotGraph
method of the DGraph control has two required arguments -- The array of
scaled data to be plotted and the index of plot -- that you must include when
you call the method.

DGraph1.PlotGraph ScaledData, 0

Depending on your programming environment, the parameters might be
enclosed in parentheses.

DGraph1.PlotGraph(ScaledData, 0)

1.7 Developing Event Handlers

After you configure your controls on a form, you can create event handlers
in your program to respond to events generated on the controls. For
example, the DSlide control has a Change event that fires (occurs) when the
value of the Value property changes.

To develop the event routine code, most programming environments
generate a skeleton function to handle each event. For example, the Visual
Basic environment generates the following function skeleton into which
you insert code when the Change event occurs.

Private Sub DSlide1_Change(ByVal PointerNo As
Integer,

12 • Introduction to DAQBench

 ByVal Value As Variant)

End Sub

1.8 Using the Analysis Library

The Analysis Library of DAQBench is packaged as one ActiveX control,
named DQAnalysis. After adding the Analysis controls to your
programming environment, use the analysis functions like any other
method on a control.

MeanValue = DQAnalysis1.Mean (Data)

Consult the online reference for more information on the individual analysis
functions and their use.

DAQBench Applications • 13

2

DAQBench Applications

This chapter describes how you can use DAQBench controls to build your
measurement or automation applications.

2.1 Measurement Applications
DAQBench contains user interface, analysis, and information integration
controls that can present and analyze acquired data, integrate the
information with popular applications. With the help of DAQBench, you
can easily create your measurement applications.

User Interface
controls

Analysis
lib

Information
Integration controls

Present data Analyze data Integrate with
popular applications

Data acquisition
operation

Data acquisition
devices

14 • DAQBench Applications

With regards to the data acquisition operations, you can choose one of the
following ways:

1. DLL library

You can call the DLL functions to perform the data acquisition task.
The acquired data can be passed to DAQBench controls to present,
analyze, or integrate with other applications. ADLINK freely provides
the DLL libraries for our data acquisition devices. You can find the
appropriate DLL library on ADLINK All in One CD.

2. ActiveX controls

We strongly recommend you to use data acquisition ActiveX controls
to work with DAQBench. ADLINK provides four data acquisition
ActiveX controls packages for our data acquisition devices:

• PCIS-OCX: NuDAQ PCI cards

• NDS-OCX: NuDAM modules

• MOTION-OCX: PCI motion control cards

• HSL-OCX: High Speed Link modules

With the data acquisition ActiveX controls, the programming becomes
easier and the data can integrate with DAQBench ActiveX controls
seamlessly. The data acquisition ActiveX controls are included in
DAQBench CD. Or you can find them in ADLINK All in One CD.

2.2 HMI/Automation Applications

The DAQBench SCADA controls and utilities can help you create
automation applications. It is suitable for supervisory control applications
that need alarm handling and logging, data logging, trending, etc. Taking
advantage of the OPC server networking capability, you can easily develop
distributed HMI applications.

The SCADA controls and utilities provide the following capabilities:

• Tag configuration utility

• Monitor and contro tags through Tag Server

DAQBench Applications • 15

• Alarm handling and logging

• Automatic data logging

• Real-time and historical trending

• Data and alarm reporting

• Equipment diagrams

The operation architecture is shown below:

Tag Configuration Utility

You can use Tag Configuration Utility to create tags, connect tags with
OPC server items, and configure their properties, including if the tag data is
logged to database, how the tag scaled, the alarm levels and priorities, etc.
With the tags connection with OPC server items, Tag Server reads data
from and writes data to the specified OPC server items.

Tag server

DAQBench ActiveX Controls

User
Interface

Reporting Trend Alarm
Interface

Database

OPC server OPC server OPC server OPC server

config file
Tag Config

Utility

16 • DAQBench Applications

All of the configuration settings are saved to a configuration file
(ADTag.cfg). The Tag Server uses the configuration file to operate.

Tag Server

The Tag Server is the heart of the DAQBench SCADA/HMI function. The
Tag Server maintains the defined tags. A tag is a data point that connects to
a real-world I/O point through specified OPC server.

The Tag Server performs the following tasks:

• Communicates with specified OPC servers

• Logs historical data and alarms to database (.mdb format)

• Scales data

• Processes alarms

DAQBench ActiveX Controls

DAQBench User Interface and SCADA controls can access and display the
real-time tag data or historical data in database.

Building DAQBench Applications with Visual Basic • 17

3

Building DAQBench Applications

with Visual Basic

This chapter describes how you can use DAQBench controls with Visual
Basic.

At this point you should be familiar with the general structure of ActiveX
controls described in Introduction to DAQBench. The individual
DAQBench controls are described in the function reference manual and
online help.

3.1 Developing Visual Basic Applications

3.1.1 Adding the DAQBench Controls to a Project’s Toolbox

Before building an application using the DAQBench controls, you must add
them to the Visual Basic toolbox. The DAQBench ActiveX controls are
divided into different groups including user interface controls (Dbui.ocx),
graph controls (DBGraph.ocx), equipment controls (DBEquip.ocx),
analysis library controls (DQAnalysis.ocx), ExcelLinker control
(ExcelLinker.ocx), WebSnapshot control (WebSnapshot.ocx), DBAccess
controls (DBAccess.ocx), OPCClient control (OPCClient2.ocx),
Thermocouple control (Thermocouple.ocx), Trend controls (Trend.ocx),
etc.

18 • Building DAQBench Applications with Visual Basic

To add DAQBench controls to the project’s toolbox.

1. In a new Visual Basic project, right click on the toolbox and select

Components.... The Components dialog box is displayed.

2. You can find the DAQBench controls which beginning with the

“DAQBench”.

3. Select the check box to the left of the controls to select the controls

you want to use in your project.

4. Choose OK to close the Components dialog box. All of the ActiveX

controls that you selected will now appear in the toolbox.

3.1.2 Building the User Interface Using DAQBench

After you add the DAQBench controls to the Visual Basic toolbox, use
them to create the front panel of your application. To place the controls on
the form, select the corresponding icon in the toolbox and click and drag the
mouse on the form. The control appears on the form. You can then move
and resize the control by using the mouse. To move a control, use the mouse
to drag the control to the desired location on the form. To resize a control,
select the control by clicking it with the mouse, and place the mouse pointer
on a sizing handle. Drag it to the desired size.

Once ActiveX controls are placed on the form, you can edit their properties
using their property sheets or custom property pages. You can also edit the
properties from within the Visual Basic program at run time.

3.1.3 Setting Properties at Design Time

After placing a control on a Visual Basic form, configure the control by
setting its properties with the Visual Basic Properties window or
DAQBench custom control property pages (illustrated below). Visual Basic
assigns some default properties, such as the control name and the tab stop.
When you create the control, you can edit these stock properties in the

Building DAQBench Applications with Visual Basic • 19

Visual Basic Properties window. To open the Properties window, select the
Properties Window command from the View menu, click the Properties
Window button on the toolbar, or use the context menu for the control. To
edit a property, from the properties list, select the name of a property. In the
right column, type or select the new property setting.

DAQBench controls supply the custom property pages for you to easily set
the properties. We suggest you to use custom property pages to set the
properties except the stock properties. To open the custom property pages,
right click on the control on the form and select Properties....

Visual Basic Properties window

20 • Building DAQBench Applications with Visual Basic

DAQBench custom property pages

3.1.4 Edit Properties at Runtime

You can set and read the properties of your controls programmatically in
Visual Basic. To set the value of a property, use the following syntax:

object.property = expression

For example, if you want to change the state of a DBoolean control during
program execution.

DBoolean1.Value = 3

Some properties of a control can be objects that have their own properties.
In this case, specify the name of the control, sub-object, and property
separated by periods. For example, consider the following code for the
DChart control.

DChart1.Xaxis.Interval = 10

In the above code, Interval is a property of the sub-object XAxis.

You can get the value of a property from your program. In most case, to get
the value of a property, you use the following syntax:

Variable = object.property

Building DAQBench Applications with Visual Basic • 21

3.1.5 Working with Control Methods

Calling the methods of an ActiveX control in Visual Basic is similar to
working with the control properties. To call a method, add the name of the
method after the name of the control. When a method doesn’t take
arguments, you call the method using the following syntax:

object.method

For example, the ClearPlots method clears the drawing area of a
DChart control.

DChart1.ClearPlots

Methods can have arguments that you pass to the method, and return values
that pass information back to your program. For example, the PlotGraph
method of the DGraph control has two required arguments -- The array of
scaled data to be plotted and the index of plot -- that you must include when
you call the method. In Visual Basic if you call a method without assigning
a return variable, any arguments passed to the method are listed after the
method name, separated by commas without parentheses.

DGraph1.PlotGraph ScaledData, 0

If you keep the return value of a method, you must enclose the arguments in
parentheses. For example, the GetState method returns the state (true or
false) of a button of the DBoolean control.

result = DBoolean1.GetState(0)

22 • Building DAQBench Applications with Visual Basic

3.1.6 Developing Control Event Procedures

After you configure your controls in the forms editor, write Visual Basic
code to respond to events on the controls. The controls generate these
events in response to user interactions with the controls or in response to
some other occurrence in the control. To develop the event procedure code
for an ActiveX control, double click the control to open the Code window,
which automatically generates a default event procedure for the control.
The following code is an example of the event procedure generated for the
DSlide control. This code is executed when the value of the slide is
changed.

Private Sub DSlide1_Change(ByVal PointerNo As
Integer,

 ByVal Value As Variant)

End Sub

To generate an event procedure for a different event of the same control,
you can select the desired event from the right pull-down menu in the code
window.

Selecting Events in the Code Window

Use the left pull-down menu in the code window to change to another
control without going back to the form window.

Building DAQBench Applications with Visual Basic • 23

3.1.7 Learning to Use Specific DAQBench Controls

Each DAQBench control and its use are described in more detail in other
sections of this manual. However, these sections do not discuss every
property, method, and feature of every control. The DAQBench function
reference manual or online help contains detailed information about each
control and all its associated properties, events, and methods. Refer to them
to find descriptions of the different features of a particular control.

24 • Building DAQBench Applications with Visual C++

4

Building DAQBench Applications

with Visual C++

This chapter describes how you can use DAQBench controls with Visual
C++.

At this point you should be familiar with the general structure of ActiveX
controls as well as C++ programming and the Visual C++ environment. The
individual DAQBench controls are described in the function reference
manual and online help.

4.1 Developing Visual C++ Applications

The following procedure explains how you can start developing Visual C++
applications with DAQBench.

1. Create a new workspace or project in Visual C++. To create a

project compatible with the DAQBench ActiveX controls, use the

Visual C++ MFC AppWizard to create a skeleton project and

program.

Building DAQBench Applications with Visual C++ • 25

2. Add the ActiveX controls you need to the controls toolbar. From the

toolbar, you can add the controls to the application itself.

3. After adding a control to your application, you can configure its

properties by its property pages.

4. While developing your program code, use the control properties and

methods and create event handlers to process different events

generated by the control.

4.1.1 Creating Your Application in Visual C++

When developing new applications, use the MFC AppWizard to create new
project workspace so that the project is compatible with ActiveX controls.
The MFC AppWizard creates the project skeleton and adds the necessary
code that enables you to add ActiveX controls to your program.

1. Create a new project by clicking New... from the File menu. The

New dialog box opens.

New Dialog Box

26 • Building DAQBench Applications with Visual C++

2. On the Projects tab, select the MFC AppWizard (exe) and click

OK to launch the wizard. If necessary, specify the directory where

the project workspace files are stored by using the Location box.

4.1.2 Adding DAQBench Controls to the Visual C++ Controls

Toolbar

Before building an application using the DAQBench controls, you must add
the controls into your Visual C++ project. To add controls to the project,
use the following procedure:

1. On the Project menu, point to Add To Project, then click

Components and Controls.

2. In the Components and Controls Gallery dialog box (the Gallery),

expand the Registered ActiveX Controls folder and select the

ActiveX controls you want to add to your project. Click Insert.

Please notice that all DAQBench controls start with DAQBench.

3. The Confirm Classes dialog box appears. Confirm the class

information using the Class Confirmation dialog.

4.1.3 Building the User Interface Using DAQBench Controls

After adding the controls to the project, use the controls in the design of the
application user interface. Place the controls on the dialog form using the
dialog editor. You can size and move individual controls to customize the
interface. Use the custom property pages to set the value of properties.

To add DAQBench controls to the form, open the dialog editor by selecting
the dialog from the Resource View of the Workspace window. If the
Controls toolbar is not displayed in the dialog editor, open it by right
clicking on any existing toolbar and enabling the Controls option.

The fastest way to add controls to a dialog box, reposition existing controls,
or move controls from one dialog box to another is to use the drag-and-drop
method. The control’s position is outlined in a dotted line until it is dropped

Building DAQBench Applications with Visual C++ • 27

into the dialog box. When you add a control to a dialog box with the
drag-and-drop method, the control is given a standard height appropriate to
that type of control.

Once you add a DAQBench control to a dialog box, you can change its
properties by right clicking on the control and selecting Properties… to
display its custom property pages.

DGraph Control Property Sheets

4.1.4 Programming with the DAQBench Controls

To program with DAQBench controls, use the properties, methods, and
events of the controls as defined by the wrapper classes in Visual C++.

Before you can use the properties or methods of a control in your Visual
C++ program, assign a member variable name to the control. This member
variable becomes a variable of the application dialog class in your project.

To create a member variable for a control on the dialog form, right click on
the control and select ClassWizard. In the MFC Class Wizard window,
click the Member Variables tab.

28 • Building DAQBench Applications with Visual C++

MFC ClassWizard -- Member Variable Tab

Select the control in the Control IDs field to which you want to add a
variable. Click Add Variable... button. The Add Member Variable dialog
box appears. In the Member variable name text box, type the name of the
variable and click OK. Most member variable names start with m_, and you
should adhere to this convention. After you create the member variable, use
it to access a control from your source code.

4.1.5 Using Properties

Unlike Visual Basic, you can not read or set the properties of DAQBench
controls directly in Visual C++. Instead, the wrapper class of each control
contains functions to read and write the value of each property. These
functions are named starting with either Get or Set followed by the name
of the property. For example, to set the Value property of a DSlide object,
use the SetValue function of the wrapper class for the DSlide control. In
the source code, the function call is preceded by the member variable name
of the control to which it applies.

m_DSlide.SetValue(COleVariant(5.0));

All values passed to properties need to be the variant type. Convert the
value passed to the Value property to a variant using COleVariant() or the
DAQBench type wrapping library function. (Please refer to section 4.1.8.)

Building DAQBench Applications with Visual C++ • 29

Use the GetValue() function to read the value of a control. For example,
pass the value of a DSlide control to a DMeter control.

m_DMeter.SetValue(m_DSlide.Pointerl.GetValue()
);

You can view the names of all the property functions (and other functions)
for a given control in the ClassView of the Workspace window. In the
Workspace window, select ClassView and then the control for which you
want to view property functions and methods. The following illustration
shows the functions for the DSlide object as listed in the Workspace. These
are created automatically when you add a control to you project.

If you need to access a property of a control which is in itself another object,
use the appropriate property function to return the sub-object of the control.
Make a call to access the property of the sub-object. Include the header file
in your program for any new objects. For example, use the following code
to configure the Axis object of a DSlide control.

#include daxis.h
CDAxis Axis1;
Axis1 = m_DSlide.GetAxis();
Axis1.GetTicks().SetMaximum(COleVariant(5.0));

You can chain this operation into one function call without having to
declare another variable.

#include dslide.h
#include daxis.h

30 • Building DAQBench Applications with Visual C++

#include dticks.h
m_DSlide.GetAxis().GetTicks().SetMaximum
(COleVariant(5.0));

If you need to access an object in a collection property, use the Item method
with the index of the object. Remember to include the header file for the
collection object. For example, to set the maximum of the y-axis on a graph,
use the following code.

#include dgraph.h
#include daxis.h
#include dticks.h
m_DGraph.GetAxis().GetTicks().SetMaximum(COleVa
riant(5.0));

Building DAQBench Applications with Visual C++ • 31

4.1.6 Using Methods

Use the control wrapper classes to extract all methods of the control. To call
a method, append the method name to the member variable name and pass
the appropriate arguments. When a method doesn’t take arguments, use a
pair of empty parentheses.

m_DGraph.Refresh();

Most methods take some arguments as variants. You must convert any such
argument to a variant before passing it to the method. You can use the
DAQBench type wrapping library to do so. (Please refer to section 4.1.8)
You can convert most scalar values to variants with COleVariant(). For
example, the first argument of PlotGraph method of the DGraph control
is variant type.

m_DGraph.PlotGraph(COleVariant(1.0), 0);

4.1.7 Using Events

After placing a control on your form, you can start defining event handler
functions for the control in your code. Events generate automatically at run
time when different controls respond to conditions, such as a user clicking a
button on the control.

Use the following procedure to create an event handler.

1. Right click on a control and select ClassWizard.

2. In the MFC Class Wizard window, click the Message Maps tab and

the desired control in the Object IDs field. The Messages field

displays the available events for the selected control.

3. Select the event and click the Add Function... button to add the

event handler.

4. To switch directly to the source code for the event handler, click the

Edit Code button. The cursor appears in the event handler, and you

can add the functions to call when the event occurs. You can use the

32 • Building DAQBench Applications with Visual C++

Edit Code button at any time by opening the class wizard and

selecting the event for the specific control.

The following is an example of an event handler generated for the Change
event of a DKnob. Insert your own code in the event handler:

void CTestDlg::OnChangeDKnob1(Short PointerNo,
const VARIANT FAR & Value)
{
// TODO: Add your control notification handler
code here
}

4.1.8 DAQBench Enhancements in Visual C++

To make it flexible and ease of use in Visual Basic environment, many
properties and methods arguments in DAQBench are with VARIANT type
which is not a basic type of C/C++. Actually VARIANT is defined as a
structure. Therefore to use VARIANT type in C/C++ is not so
straightforward as the basic types. In addition to this, some of the
DAQBench controls encapsulate objects in it. For example, DChart control
encapsulates Xaxis, Yaxis objects. You can easily access the encapsulated
objects in VB. However it is not so straightforward to access them in VC++.
In order to let user can access the encapsulated objects in the DAQBench
controls, and use VARIANT structure in the VC++ environment in an
easier way, DAQBench provides some enhancement functions.

♦ The enhancement method of DAQBench controls

Some methods are added in the User-Interface controls to help user with the
above difficulties. Take the DChart control object as an example. After
adding this control into the project, you will find that some additional
functions in the header file “dchart.h”, such as :

void SetXAxisViewNumber(long ViewNumber);
void SetYAxisMinMax(double Min, double Max);

With these functions, user can set the control properties directly and pass
the arguments by the basic data type. Without this kind of functions, if you
want to draw the X-Axis grids of the DChart object during the run-time, you
need the codes below in C++:

Building DAQBench Applications with Visual C++ • 33

CDChart m_Chart; //declare a chart object
//set the major grid property as true
m_Chart.GetXAxis().GetTicks().SetMajorGrid(tru
e);

Now with these enhancement functions, you can simply show the grids by
the following way:

CDChart m_Chart2; //declare a chart object
//enable major grid and disable minor grid
m_Chart2.SetXAxisGrid(true, false);

Please refer to the DAQBench function reference manual or online help for
the details of the enhancement methods.

♦ The data type wrapping library for DAQBench VARIANT

structure

Due to the limitation of parameter passing in COM, some DAQBench
control object methods have VARIANT type of parameters. If user wants to
convert the VARIANT type data to other basic type data (e.g. integer, real),
user can use COleVariant to wrap the VARIANT type data to basic data
type. But for some complicated types (such as array), COleVariant can not
provide the type casting function. Therefore DAQBench provides a data
type conversion library “VarPacker.dll” to help users to wrap other data
type into a VARIANT structure.

Before going to next stage, there are some things user has to do:

1. Check if the VarPacker.dll is in the Winnt/System32 (for

NT/2000) or Windows/System (for 98) directory.

2. Check if the VarPacker.h is in the <DAQBench install

dir>\VarPacker directory.

3. Open/New the VC++ project workspace.

34 • Building DAQBench Applications with Visual C++

4. Add the VarPacker.h into your project workspace.

5. Link with the VarPacker.lib library, this library is located in

<DAQBench install dir>\VarPacker directory.

After the above setting, user now can use “VarPacker” library functions.
Some usage examples of the library are described below:

Case 1: Suppose user wants to change the Value property (VARIANT

type) of a DBoolean control to 16. User can write the code in the

following way:

DBoolean1.SetValue(LongToVar((long)
16));

Case 2: Suppose user wants to use the DChart object to draw a sine

wave. The PlotCharts method needs an array wrapped in the

VARIANT.

 structure as its argument. Here is the solution of this case:

double data[100]; //declare the array to
store data
…
// generate the sine wav data and store in
data[100]
…
Dchart1.PlotChart(ArrayToVar(data, 100));

Please refer to the DAQBench function reference manual or online help for
the details of the data type wrapping functions in VarPacker.dll.

Building DAQBench Applications with Delphi • 35

5

Building DAQBench Applications

with Delphi

This chapter describes how you can use DAQBench controls with Delphi.

At this point you should be familiar with the general structure of ActiveX
controls. The individual DAQBench controls are described in the function
reference manual and online help.

5.1 Upgrading from a Previous Version of DAQBench

When you upgrade DAQBench, you must remove the current controls from
the Delphi environment and reinsert the controls in the Delphi environment
to update the support files.

1. Click Install Packages... from the Component menu.

2. A list of available packages appears under Design packages, select

Delphi User’s Components.

3. Click on Edit... and Yes in the dialog boxes to edit the user

component package. The package editor lists all the components

36 • Building DAQBench Applications with Delphi

currently installed in the user components package, including the

DAQBench controls.

4. Select each of the DAQBench entries and click Remove.

5. Click on Compile to rebuild the package.

6. Close the package editor.

5.2 Developing Delphi Applications

The Component palette in Delphi contains all of the controls available for
building applications. After placing each control on the form, configure the
properties of the control with the default and custom property pages. Each
control you place on a form has associated code (event handler routines) in
the Delphi program that automatically executes when the user operates the
control or the control generates an event.

5.2.1 Loading the DAQBench Controls into the Component

Palette

Before you can use the DAQBench controls in your Delphi applications,
you must add them to the Component palette in the Delphi environment.
You need to add the controls to the palette only once because the controls
remain in the Component palette until you explicitly remove them. When
you add controls to the palette, you create Pascal import units (header files)
that declare the properties, methods, and events of a control. When you use
a control on a form, a reference to the corresponding import unit is
automatically added to the program.

Note: Before adding a new control to the Component palette, make sure to

save all your work in Delphi, including files and projects. After

loading the controls, Delphi closes any open projects and files to

complete the loading process.

Use the following procedure to add ActiveX controls to the Component
palette.

Building DAQBench Applications with Delphi • 37

1. Choose Import ActiveX Control... from the Component menu to
open the Import ActiveX Control dialog box. The dialog box displays a
list of currently registered ActiveX controls.

Delphi Import ActiveX Control Dialog Box

2. Select the control group you want to add to the Component palette.

All DAQBench controls start with DAQBench.

3. After selecting the control group, click Install....

4. In the Install dialog, click OK to add the control to the user

package, which makes the control available on the Palette.

5. In the following dialog, click on Yes to rebuild the user’s

components package with the added controls. Another dialog box

acknowledges the changes you have made to the user’s components

package, and the package editor displays the components currently

installed.

38 • Building DAQBench Applications with Delphi

At this point, you can add additional ActiveX controls with the following
procedure.

a. Click on the Add button.

b. From the Import ActiveX tab, select the ActiveX control you

want to add.

c. After adding the ActiveX controls, compile the user’s

components package.

Building DAQBench Applications with Delphi • 39

5.2.2 Building the User Interface

Placing Controls

To add a control on the form, select the control on the palette, then clicking
on the form where you want to place it. You can also double-click on the
control to put it in the middle of the form. Use the mouse to move and resize
controls. You can change their default property values by using the Object
Inspector and custom property pages.

DAQBench Controls on a Delphi Form

Object Inspector

When you select a control on a form, the Object Inspector displays its
published properties and allows you to edit it. To open the Object Inspector,
select Object Inspector from the View menu or press <F11>. Under the
Properties tab of the Object Inspector, you can set properties of the control.

Delphi Object Inspector

40 • Building DAQBench Applications with Delphi

Custom Property Pages

DAQBench controls supply the custom property pages for you to easily set
the properties. We suggest you to use custom property pages to set the
properties except the stock properties. To open the custom property pages,
double-click on the control or right click on the control on the form and
select Properties.... The following figure shows the DAQBench DGraph
control property pages.

DAQBench DGraph Control Property Page

Building DAQBench Applications with Delphi • 41

5.2.3 Programming with DAQBench

After placing controls on the form, you can use their methods in your code
and create event handler to process events generated by the controls at run
time.

Setting Properties at Runtime
Any writable property can be set at runtime in your program. To set the
value of a property, use the following syntax:

object.property := expression;

For example, if you want to change the state of a DBoolean control during
program execution.

DBoolean1.Value := 3;

Some properties of a control can be objects that have their own properties.
In this case, specify the name of the control, sub-object, and property
separated by periods. For example, consider the following code for the
DChart control.

DChart1.Xaxis.Interval := 10;

In the above code, Interval is a property of the sub-object XAxis.

You can get the value of a property from your program. In most case, to get
the value of a property, you use the following syntax:

Variable := object.property;

For example, you can assign the value of a DBoolean control to a text box
on the user interface.

Edit1.Text := DBoolean1.Value;

Using Methods

Methods are called just like ordinary procedures and functions. To call a
method, add the name of the method after the name of the control. When a
method doesn’t take arguments, you call the method using the following
syntax:

object.method;

For example, the ClearPlots method clears the drawing area of a
DChart control.

42 • Building DAQBench Applications with Delphi

DChart1.ClearPlots;

Methods can have arguments that you pass to the method. For example, the
PlotGraph method of the DGraph control has two required arguments --
The array of scaled data to be plotted and the index of plot -- that you must
include when you call the method. You must enclose the arguments in
parentheses.

DGraph1.PlotGraph(data, 0);

In most cases, arguments passed to a method are of type variant. Simple
scalar values can be automatically converted to variants. Arrays, however,
must be explicitly declared as variant arrays.

The following example plots data using the graph PlotGraph method.
Consult your Delphi documentation for more information about the variant
data type.

Var
 vData:Variant;

begin
 //Create array in Variant
 vData := VarArrayCreate([0, 99], varDouble);
 for i := 0 to 99 do
 begin
 vData[i] := Random;
 end;
 //Plot Variant Array
 DGraph1.PlotGraph(vData, 0);

end;

Using Events

Use event handlers in your program to respond to and process events
generated by the DAQBench controls. Delphi can generate skeleton event
handlers for controls. To create the event handler.

1. Select a control.

2. Click the Events tab in the Object Inspector. The Event page

displays all events for the selected control.

Building DAQBench Applications with Delphi • 43

3. Select the event you want, then double-click the Value column.

Delphi generates the event handler in the code editor.

4. Inside the begin…end block, type the code that you want to

execute when the event occurs.

44 • Introducing the DAQBench ActiveX Controls

6

Introducing the DAQBench ActiveX

Controls

6.1 User Interface Controls

6.1.1 DBoolean Control

DBoolean ActiveX control is an UI component for operating boolean
functions. The maximum bit of the DBoolean is 32. It can be using to
indicate the boolean data like the LED signal. It can also be used to control
the bit state of data like the switch. So, the DBoolean control is very
convenient to be used as the display of digital input and the control of
digital output at data acquisition operation.

Pattern style

Square Button Square Radio Button Square Push Button

Introducing the DAQBench ActiveX Controls • 45

LED Button Round Push Button Round Button

Toggle Switch Switch Slide Switch

46 • Introducing the DAQBench ActiveX Controls

6.1.2 DSlide Control

The DSlide control represents different types of linear displays, such as the
variant slide, thermometers and tank display. With DSlide control, users
can input or output(display) individual or multiple scalar values. A DSlide
can have multiple pointers (maximum eight) on the control, Each pointer
represents one scalar value.

Pattern style

Wide horizon slide Wide vertical slide Narrow horizon slide

Narrow vertical slide Tank Thermometer

6.1.3 DKnob Control

The DKnob control represents different types of circular displays, such as
the knob, dial and different type of meters. With DKnob control, users can
input or output(display) individual or multiple scalar values. A DKnob can
have multiple pointers (maximum eight) on the control, Each pointer
represents one scalar value.

Pattern style

Knob Dial Upper meter

 Down meter Left meter Right meter

Introducing the DAQBench ActiveX Controls • 47

6.1.4 D7Segment Control

D7Segnment ActiveX control is an UI component for display number using
style of seven segment display. Users can configure the property of control
to specify the digit number, declined, Digit number after point, color of
segment, transparent and signed, etc.

Pattern style

6.1.5 DLEDMeter Control

DLEDMeter ActiveX control is an UI component for display number using
style of LED Bar display. Users can configure the property of control to
specify the bar number, direction, bar color, ticks, max value and min value,
etc.

Pattern style

48 • Introducing the DAQBench ActiveX Controls

6.1.6 DGraph Control

The DGraph control is a flexible control used for plotting data. It can
display multiple plots(maximum eight plots). Plotting data refers to the
process of taking a large number of points and updating one or more plots
on the graph with new data. The DGraph control is made up of a hierarchy
of objects, as illustrated in the following figure.

The XAxis object represents the input data points at horizon scale. Users
can set the ViewNumber property to specify the DGraph object how many
data points will display on plot window. The XAxis object can display the
time domain scale when the scale format is “Date” or “Time”. The XAxis
object include one Ticks object that will process different style of ticks
color, ticks mark and ticks label.

The YAxis object represent s the value of data points at the vertical scale.
Users can set the maximum and minimum properties to specify the DGraph
object has the display range at plot window. The YAxis object has many
scale format to display scale label. The YAxis object includes one Ticks
object that will process different style of ticks color ,ticks mark and ticks
label.

The DGraph object includes eight Plot objects. Users can specify the
property of each plot object that include line style, line width, pointer style,
fill style, line color, fill color, pointer color, interpolation type.

Introducing the DAQBench ActiveX Controls • 49

Example

6.1.7 DChart Control

The DChart control is a flexible control used for charting data. It can
display multiple plots(maximum eight plots). Charting data appends new
data points to an existing plot over time. Charting is used with slow
processes where only few data points per second are added to the graph.
The DChart control is made up of a hierarchy of objects, as illustrated in the
following figure.

50 • Introducing the DAQBench ActiveX Controls

The XAxis object represents the input data points at horizon scale. Users
can set the ViewNumber property to specify how many data points will
display on plot window. The XAxis object can display the time domain
scale when the scale format is “Date” or “Time”. The XAxis object includes
one Ticks object that will process different style of ticks color ,ticks mark
and ticks label.
The YAxis object represent the value of data points at vertical scale. Users
can set the Maximum and Minimum property to specify the display range
at plot window. The YAxis object has many scale format to display scale
label. The YAxis object includes one Ticks object that will process different
style of ticks color, ticks mark and ticks label.

The DChart object include eight Plot object. Users can specify the property
of each plot object that include line style, line width, pointer style, fill style,
line color, fill color, pointer color, interpolation type.

Users can set the PlotMode property of DChart to “Overlaid” or
“Stacked” to specify different type for multiple plot data. The
UpdateMode property of DChart can determinate different update method
while the charting data would be continuously input and the plot window
would be scrolling.

Example

Introducing the DAQBench ActiveX Controls • 51

6.1.8 DXYGraph Control

The DXYGraph control is a flexible control used for drawing XY data. It
can display multiple plots(maximum eight plots). Plotting XY graph data is
drawing the curve of a (x,y) data array. The DXYGraph control is made up
of a hierarchy of objects, as illustrated in the following figure.

The XAxis object represents the value of data points at horizon scale. Users
can set the Maximum and Minimum properties to specify the display range
at plot window. The XAxis object has many scale format to display scale
label. The XAxis object includes one Ticks object that will process different
style of ticks color ,ticks mark and ticks label.

The YAxis object represents the value of data points at vertical scale. Users
can set the Maximum and Minimum property to specify the display range
at plot window. The YAxis object has many scale format to display scale
label. The YAxis object include one Ticks object that will process different
style of ticks color ,ticks mark and ticks label.

The DXYGraph object includes eight Plot object. Users can specify the
property of each plot object that include line style, line width, pointer style,
fill style, line color, fill color, pointer color, interpolation type.

52 • Introducing the DAQBench ActiveX Controls

6.1.9 DIntenGraph Control

The DIntenGraph control is a control used for drawing color intensity on
XY plane. It has one ZAxis that represents the color intensity at one point of
XY plane. So, The ZAxis is the 256 color map. Plotting intensity data refers
to the process of taking a large XY plane that include a number of points.
The DIntenGraph control is made up of a hierarchy of objects, as illustrated
in the following figure.

The XAxis object represents the input data points at horizon scale of plane.
Users can set the ViewNumber property to specify how many data points
will display on plot window. The XAxis object can display the time domain
scale when the scale format is “Date” or “Time”. The XAxis object includes

Introducing the DAQBench ActiveX Controls • 53

one Ticks object that will process different style of ticks color, ticks mark
and ticks label.

The YAxis object represents the input data points at vertical scale of plane.
Users can set the ViewNumber property to specify how many data points
will display on plot window. The YAxis object has many scale format to
display scale label. The YAxis object includes one Ticks object that will
process different style of ticks color, ticks mark and ticks label.

The ZAxis object represents the 256 color map. So, the Maximum value of
scale is fixe7d at 255 and the Minimum value is fixed at 0. Users can
specify the color value at each color index. The ZAxis object includes one
Ticks object that will process different style of ticks color, ticks mark and
ticks label.

6.1.10 DIntenChart Control

The DIntenChart control is a control used for drawing color intensity on XY
plane. It has one ZAxis that represents the color intensity for one point in
the XY plane. The ZAxis is a 256 color map. Charting data appends new
intensity plane data to plot over time. Charting is used with slow processes
where only few plane data per second are added to the graph. When more
plane data are added, they also then can be displayed on graph, the graph
scrolls and the new plane are added to the right side of the graph while old
plane disappear to the left. The DIntenChart control is made up of a
hierarchy of objects, as illustrated in the following figure.

54 • Introducing the DAQBench ActiveX Controls

The XAxis object represents the input data points at horizon scale of plane.
Users can set the ViewNumber property to specify how many data points
will display on plot window. The XAxis object can display the time domain
scale when the scale format is “Date” or “Time”. The XAxis object includes
one Ticks object that will process different style of ticks color, ticks mark
and ticks label.

The YAxis object represents the input data points at vertical scale of plane.
Users can set the ViewNumber property to specify how many data points
will display on plot window. The YAxis object has many scale format to
display scale label. The YAxis object includes one Ticks object that will
process different style of ticks color, ticks mark and ticks label.

The ZAxis object represents the 256 color map. So, the Maximum value of
scale is fixed at 255 and the Minimum value is fixed at 0. Users can specify
the color value at each color index. The ZAxis object includes one Ticks
object that will process different style of ticks color, ticks mark and ticks
label.

Introducing the DAQBench ActiveX Controls • 55

6.1.11 DDE/NetDDE Function

The User Interface objects (except DGraph, DXYGraph and
DIntenGraph objects) now support the DDE (Dynamic Data
Exchange) client capability. Therefore they can connect with DDE server
applications for exchanging data. You can animate graphics with values
coming from any DDE server or share data with DDE server via the DDE
protocol. (Example : ISaGRAF target)

In order to connect with DDE server, user first must assign the appropriate
property values for the LinkTopic, LinkItem and LinkMode properties.
These properties are used to identify the DDE conversion. User then can use
the DDE methods to control the communication between DDE server and
User Interface controls.

The DDE property setting example is described below:
Control.LinkTopic=Application|topic
(Application_name|topic_name)

Control.LinkItem=item (item_name)

Control.LinkMode=1 (Automatic) or others

There are three link modes supported – 1(automatic), 2(manual), and
3(notify). If you set the LinkMode property to automatic, whenever the data
specified by the combination of the LinkTopic and LinkItem changes, the
control receives the new data automatically. For the controls having Change
event, the event occurs. If you set the LinkMode property to manual or
notify, the data do not update automatically and you must use the
LinkRequest method to obtain new data from the DDE server. The
difference of the two modes is that with notify link, the LinkNotify event
occurs whenever the source has new data to supply to the control. You can

56 • Introducing the DAQBench ActiveX Controls

also stop the conversation at any time by setting the LinkMode property to 0
(None).

Please refer to the DAQBench function reference manual for the details of
DDE properties, events and methods of User Interface objects.

The detail connect capabilities are described as below :
In DBoolean object , the DDE conversion link with the value of the
Object.
In D7Segment object , the DDE conversion link with the value of the
Object.
In DLEDMeter object , the DDE conversion link with the value of the
Object.
In DSlide object , the DDE conversion link with the Pointer value of
the Object. (The pointer1 to pointer8 can support DDE).
In DKnob object , the DDE conversion link with the Pointer value of
the Object. (The pointer1 to pointer8 can support DDE).
In DChart object , the DDE conversion link with the Plot value of the
object (The polt1 to polt8 can support DDE).

Based on the DAQBench DDE functions, DAQBench also can provide the
NetDDE function. The NetDDE provides DAQBench with the additional
capabilities to get / set data of DDE server through the Microsoft Network
(remote control capability). User can use this capability on Win
95/98/NT/2000 system.

The NetDDE property setting example is described below:

Control.LinkTopic= \\Node\Application|topic

(\\Node_name\Application_name|topic_name; Node_name is the name of
the node (computer) which in the Microsoft network neighborhood. The
DDE server is inside this machine.)

Control.LinkItem=item (item_name)

Control.LinkMode=1 (Automatic)

Depending on the Windows platform, there are different ways to start the
DDE service.

Window NT
If you are using the NetDDE service on Windows NT, you need to set up
DDE share for these nodes.

Introducing the DAQBench ActiveX Controls • 57

About the configuring of DDE share, please follow the procedures
described below:

♦ To add a DDE share on Windows NT operating systems

1. On the Start menu of the Windows Taskbar, point to Run. In the

Run dialog box that appears, type DDESHARE and then click OK.

The DDE Share program’s main window appears.

2. From the DDE Shares menu, click DDE Shares. The DDE Shares

dialog box appears.

3. Click Add a Share. The DDE Share Properties dialog box appears.

4. In the Share Name box, enter the name of the DDE server

application and “|*” for the Share name. For example, if your server

application name is ADLDDE, enter ADLDDE|*.

5. In the Application Name box, enter the name of the application

again.

6. In the Topic Name box, enter “*”.

7. Click Permissions. The DDE Share Name Permissions dialog box

appears.

8. Select “Everyone” in the Name list and “Full Control” as the Type

of Access.

9. Click OK to exit the DDE Share Name Permissions dialog box and

return to the DDE Share Properties dialog box.

10. Click OK to return to the DDE Shares dialog box.

58 • Introducing the DAQBench ActiveX Controls

Now the Share you created will be included in the DDE Shares list.

(For more information on using the DDE Share program, see your
Microsoft documentation.)

♦ To configure trusted DDE share

1. From the DDE Shares menu, click DDE Shares.

2. In the DDE Shares dialog box that appears, select the DDE share

for which you want to set up a trust relationship.

3. Click Trust Share.

4. The Trusted Share Properties dialog box appears.

5. Click the Start Application Enable and Initiate to application Enable

options.

6. Click OK.

Window 95
To run NetDDE program in Windows95, you must add a shortcut for
Netdde.exe to the Startup group. (The Netdde.exe is in the Window95
directory.) To do so, use the following four steps:

1. Use the right mouse button to click an empty space on the taskbar,

and then click Properties on the menu that appear.

2. On the Start Menu Program tab, click Add.

3. Use the Create Shortcut Wizard to create a shortcut for Netdde.exe

in the Windows folder.

4. After you create the shortcut, restart your computer.

Introducing the DAQBench ActiveX Controls • 59

6.2 Information Integration Controls

6.2.1 ExcelLinker Control

The ExcelLinker.OCX includes one ActiveX control for linking DAQ data
to Microsoft Excel Application. The spreadsheet is one of the most
commonly used tools among engineering, manufacturing, and management
personnel. Using ExcelLinker ActiveX control, scientists and engineers can
further increase productivity by integrating DAQ data collection directly
into the Microsoft Excel worksheets.

The description of using ExcelLinker control is listed below.

Specification:

1. Specify the file name of Excel, may be a new one or a exist file.

2. Specify the worksheet name in indicated excel file.

3. Specify the cell range for putting DAQ data in indicated worksheet.

At runtime:

1. Retrieve DAQ data form DAQ ActiveX control of DAQBench.

2. Call ExcelLinking(Data) method of ExcelLinker control to linking

Excel application. If excel have not been run then will be

automatically invoked.

3. ExcelLinker will select the specified worksheet and put DAQ data

into the specified cells.

4. Last, ExcelLinker will command Excel application to recalculate

theFormulas in worksheet.

60 • Introducing the DAQBench ActiveX Controls

Introducing the DAQBench ActiveX Controls • 61

6.2.2 WebSnapshot Control

The WebSnapshot.OCX includes one ActiveX control that can snapshot the
image of application and export the image to web through http protocol.
The Internet browser is common and public tool on Internet. Using
WebSnapshot ActiveX control, user can easily use Internet browser to
remote monitoring the application image because the WebSnapshot
ActiveX control can automatically create template HTML file that would
refresh the JPG file of application image.

The description of using WebSnapshot control is listed below.

Specification:

1. Specify the file name of HTML, may be a new one or a exist file.

2. Specify the file name of JPG for storing the image of application.

3. Specify the operate mode, may be automatic or manual updated.

4. Specify the interval time of refresh image in automatic updated.

5. Create HTML file of refresh JPG file.

At runtime:

1. Automatically capture image of application to the JPG file.

2. Manually, Call CaptureImage() method to capture image of

application to the JPG file.

3. User can use Internet browser to browse the specified HTML file in

remote machine.

62 • Introducing the DAQBench ActiveX Controls

Introducing the DAQBench ActiveX Controls • 63

6.2.3 DBAccess Controls

The DBAccess.OCX includes three ActiveX controls that can access
database through ODBC. Open Database Connectivity (ODBC) is a
standard or open application programming interface (API) for accessing a
database. By using ODBC statements in a program, you can access data in a
number of different databases, including Access, dBase, DB2, Excel, and
Text. Using the ActiveX controls of DBAccess, programmers don’t need to
understand the detail ODBC API and only need to specify some
information by using friendly property page, then user can easily write data
to, read data from and delete data from Database.

The processes of using DBAccess controls are listed below.

DBWrite control

Specification:

1. Specify the data source name (DSN) of Database on ODBC.

2. Specify the tables and columns for writing data in specified

Database.

At runtime:

1. Retrieve DAQ data form DAQ ActiveX control of DAQBench.

2. Call ExecuteWrite(DataArray) method to write data to specified

Database.

DBRead control

Specification:

1. Specify the data source name (DSN) of Database on ODBC.

2. Specify the tables and columns for reading data in specified

Database.

64 • Introducing the DAQBench ActiveX Controls

3. Specify the query condition.

In run time:

1. Call ExecuteRead(DataArray) method to read data from specified

Database.

2. Uses can pass DataArray to DGraph control to display.

DBDelete control

Specification:

1. Specify the data source name (DSN) of Database on ODBC.

2. Specify the table for removing data in specified Database.

3. Specify the remove condition.

At runtime:

1. Call ExecuteDelete() method to remove data from specified

Database.

Introducing the DAQBench ActiveX Controls • 65

6.2.4 OPCClient Control

The OPCClient2.OCX includes one ActiveX control that can connect,
access data and disconnect the OPC Server. The OPC (OLE for Process
Control) is established by OPC Foundation. It is a standard interface for
accessing process control data in industry automation. The OPC is in
client/server model and based on the COM/DCOM technology. Using OPC
interface you can easily access control data across Internet and can fulfill
the integration between manufacture system and business system. The
OPCClient control uses OPC interface to connect, access and disconnect to
OPC servers. Using the OPCClient control, You don’t need to know and
program the OPC interface and only need to specify some information by a
friendly user interface.

The following steps show how to use OPCClient control.

1. Select the OPC server on local machine or remote machine. If the

OPC server is on the remote machine then you have to input the user

name and password to log on remote machine.

66 • Introducing the DAQBench ActiveX Controls

Property page “OPC Server” of OPCClient ActiveX control

2. Create the OPC Groups that would own some data items and some

attributes (eg. Update rate…)

Property page “OPC Group” of OPCClient ActiveX control

3. Create the OPC Items for OPC Groups.

Introducing the DAQBench ActiveX Controls • 67

Property page “OPC Item” of OPCClient ActiveX control

4. At runtime, you must first connect OPC server.

Result = OPCClient1.Connect()

5. Then, you can directly access OPC item as read/write variables.

//Read all items in group(0)
OPCClient1.Group(0).ReadItems
Value1 = OPCClient1.Group(0).Item(0).Value
Value2 = OPCClient1.Group(0).Item(2).Value

//Write item(3) in group(0)
OPCClient1.Group(0).Item(1).Value = 5.6
OPCClient1.Group(0).Item(3).Write

6. If you don’t need to access the OPC server any more, you must

disconnect OPC server.

OPCClient1.Disconnect

68 • Introducing the DAQBench ActiveX Controls

6.2.5 Thermocouple Control

The ADLINK Thermocouple control supports three types of Thermocouple.
They are the J-type, K-type and T-type Thermocouple. User can just assign
the voltage value as the control method’s input parameter, then the
Thermocouple control converts the voltage value to the temperature value.
A Thermocouple control example is described as below:

Dim Seekback_Temperature as Variant
Dim Temperature as Variant
Seekback_Temperature =

Thermocouple1.Seebeck
Temperature(298.3, 0)

Temperature=Thermocouple1.Temperature(34521.11,
Seekback_Temperature,
1)

Introducing the DAQBench ActiveX Controls • 69

6.3 Analysis Control

With the analysis control, you can perform operations such as matrix and
array calculations, complex number analysis, statistical analysis and
Fast-Fouri-Transform. User can receive data from DAQ or NuDAM
controls. Then pass data to the DQAnalysis control to process analysis work.
The result of analysis can be pass to the DGraph control to display.

The bitmap of DQAnalysis Control

VB Example:

Dim tMean As double
Dim data(0 to 99)
For I=0 to 99
 Data(i) = Rnd
Next
tMean = DQAnalysis.Mean(data)

6.4 SCADA Controls and Utilities

6.4.1 Tag Server and Tag Configuration Utility

The Tag Server is the heart of DAQBench SCADA/HMI function. The Tag
Server maintains the defined tags. A tag is a data point that connects to a
real-world I/O point through specific OPC server.

A Tag Configuration Utility is provided for you to configure and
management tags. You can access the utility from the Windows Start menu
Programs>>DAQBench>>Tag Configuration Utility. With Tag
Configuration Utility, you can configure the tag attributes, including if the
tag data is logged to database, how the tag scaled, the alarm levels and
priorities, etc.

DAQBench User Interface and SCADA controls can access and display the
real-time tag data or historical data in database.

70 • Introducing the DAQBench ActiveX Controls

6.4.2 Alarm Controls

AlarmDisplay ActiveX control is an UI component that particularly
designed for cooperating with ADLINK TagServer to display the alarms
happens in the Tag Server. You may pre-define some alarm situations in the
Tag Server (for example, an analog tag can have alarms such as LoLo, Lo,
Hi, Hi, major deviation, minor deviation, and rate of change). When the
alarm(s) occur(s), Tag Server will inform the AlarmDisplay to display the
currently happened alarm message(s). Also when the user acknowledges
the happened alarm or it returns to the normal state, Tag Server will inform
AlarmDisplay again to erase the shown alarm, or display a RTN or ACK
message.

The AckButton can acknowledge the alarm(s) that defined in Tag Server.
You can use AckButton to acknowledge the alarm of a single tag, alarms in
a selected area, or all tags in the Tag Server. After receiving the
acknowledge from AckButton, the Tag Server will modify the alarm status
and write the change of status into alarm logging file.

6.4.3 Trend Controls

HistTrend ActiveX control is an UI component that particularly designed
for retrieving data from the database created by ADLINK Tag Server. You
may simply specify the tag names and time interval, and the HistTrend will
retrieve data from database and draw them using the specified plot. In
addition, the on-screen display feature of HistTrend ActiveX control
provides you a simple way to read the data value and timestamp using
mouse cursor.

RTTrend ActiveX control is an UI component that particularly designed for
cooperating with ADLINK TagServer. RTTrend retrieves data from Tag
Server, and plots the data using its value as y-coordinate and its timestamp
as x-coordinate. Therefore you can see the “real-time” trend of data. You
may also use particular method to plot your own data rather than the data
retrieved from Tag Server.

6.4.4 Report Controls

AlarmReport ActiveX control is an UI component that particularly
designed for cooperating with the database that created by ADLINK
TagServer. Using the AlarmReport control, you can easily retrieve the

Introducing the DAQBench ActiveX Controls • 71

alarm information stored in the database. You may simply use mouse click
to set the filtering condition such as the time interval, the type of alarms, or
the priority of alarms. We also provide some additional methods to let you
print the alarm information and save the alarm information to file.

DataReport ActiveX control is an UI component that particularly designed
for cooperating with the database that created by ADLINK TagServer.
Using the DataReport control, you can easily retrieve the tag data stored in
the database. You may simply use mouse click to set the filtering condition
such as the time interval and the selected tags. We also provide some
additional methods to let you print the tag data and save the tag data to file.

6.4.5 Tag Control

The Tag ActiveX control is a component that particularly designed for
cooperating with ADLINK Tag Server. A Tag is a abstract symbol that
represents a real data source (i.e. a analog input channel, a digital output
channel, etc.), and physically connects to the real data source. Your
manipulation to a Tag ActiveX control will reflect to the physical device,
hence, you can read/write a value from/to a Tag like you read/write it
from/to the physical device. The Tag ActiveX control provides an easy way
to manipulate your hardware regardless of what they are or who made them.

6.4.6 Equipment Controls

The DBEquip.OCX includes five ActiveX controls for some equipment
pattern of industry automation such as Pump, Pipe, Motor, Tank, Valve.
These controls can be use to represent the equipment when users develop
the MMI applications of industry automation. User can select variant style
of each equipment control.

The pattern style of DMoter control

The pattern style of DPump control

72 • Introducing the DAQBench ActiveX Controls

The pattern style of DPump control

The pattern style of DPump control

The pattern style of DPump control

DDE/NetDDE Function

The Equipment objects now support the DDE (Dynamic Data Exchange)
client capability.

The connect capabilities are described as below :
In DMotor object , the DDE conversion link with the On/Off state of
the Object.
In DPipe object , the DDE conversion link with the Fill state of the
Object.
In DPump object , the DDE conversion link with the FanMode state of
the Object.
In DTank object , the DDE conversion link with the Value of the
Object.
In DValve object , the DDE conversion link with the State of the
Object.

Please refer to section 6.1.11 for the details of the usage of DDE
conversion.

Distrbution of Applications • 73

7

Distribution of Applications

About the distribution of applications with DAQBnech ActiveX control
objects, please contact ADLINK for the ADLINK DAQBenech object
distribution policy.

e-mail : service@adlinktech.com

e-mail : sw@adlink.com.tw

74 • Warranty Policy

Warranty Policy

Thank you for choosing ADLINK. To understand your rights and enjoy all
the after-sales services we offer, please read the following carefully.

1. Before using ADLINK’s products please read the user manual and

follow the instructions exactly. When sending in damaged products for
repair, please attach an RMA application form which can be downloaded
from: http://rma.adlinktech.com/policy/.

2. All ADLINK products come with a limited two-year warranty, one year
for products bought in China.

• The warranty period starts on the day the product is shipped
from ADLINK’s factory.

• Peripherals and third-party products not manufactured by
ADLINK will be covered by the original manufacturers'
warranty.

• For products containing storage devices (hard drives, flash
cards, etc.), please back up your data before sending them for
repair. ADLINK is not responsible for any loss of data.

• Please ensure the use of properly licensed software with our
systems. ADLINK does not condone the use of pirated software
and will not service systems using such software. ADLINK will
not be held legally responsible for products shipped with
unlicensed software installed by the user.

• For general repairs, please do not include peripheral
accessories. If peripherals need to be included, be certain to
specify which items you sent on the RMA Request &
Confirmation Form. ADLINK is not responsible for items not
listed on the RMA Request & Confirmation Form.

3. Our repair service is not covered by ADLINK's guarantee in the
following situations:

• Damage caused by not following instructions in the User's
Manual.

• Damage caused by carelessness on the user's part during
product transportation.

Warranty Policy • 75

• Damage caused by fire, earthquakes, floods, lightening,
pollution, other acts of God, and/or incorrect usage of voltage
transformers.

• Damage caused by inappropriate storage environments such as
with high temperatures, high humidity, or volatile chemicals.

• Damage caused by leakage of battery fluid during or after
change of batteries by customer/user.

• Damage from improper repair by unauthorized ADLINK
technicians.

• Products with altered and/or damaged serial numbers are not
entitled to our service.

• This warranty is not transferable or extendible.
• Other categories not protected under our warranty.

4. Customers are responsible for all fees necessary to transport damaged
products to ADLINK.

For further questions, please e-mail our FAE staff: service@adlinktech.com

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

