Wide Selection of Modular Instruments

Modular Instruments Optimized for Automated Test

Overview

From entry-level to high-end products and from data acquisition to digital input/output, ADLINK provides a wide variety of modular instruments with the best price/performance ratio to enable cost-effective development of your measurement and automation systems. Four categories of instruments are available to fit your needs: high-speed digitizers, switches, digital multimeters, and arbitrary waveform generators.

High-Speed Digitizers

Digitizers offer a quick and precise way for input signal acquisition and are widely used in IC testing, video testing, automatic test equipment, radar and sonar testing, etc. ADLINK's PXI-9816, PXI-9826 and PXI-9846 are 4-CH 16-bit, 10/20/40MS/s simultaneous sampling digitizers. The PXI-9820/PCI-9820 is a 65 MS/s, high-resolution PXI/PCI-based digitizer with deep SODIMM SDRAM memory. The PCI-9812, PCI-9810 and PCI-9812A are 4-CH, 10 or 12-bit, 20 MS/s simultaneous-sampling analog input PCI cards.

Switches

Switches are widely used in automatic test equipment (ATE), process control systems, data acquisition systems, etc. ADLINK offers several types of switches to meet your application requirements. ADLINK switches include 16-CH general-purpose relays, 24-CH scanners or multiplexers, and a 32 cross-point two-wire matrix.

Digital Multimeters

ADLINK provides two series of digital multimeters: 7-1/2 digit and 6-1/2 digit digital multimeters Both are available in PXI and PCI formats. The SMX2064/2060 and SM2064/2060 are 7-1/2 digit high-speed PXI/PCI digital multimeters, which maintain high accuracy at high measurement rates. The SMX2040 and SM2040 series are 6-1/2 digit PXI/PCI digital multimeters, which provide a combination of resolution, accuracy, and speed that surpasses rivals.

Arbitrary Waveform Generators

Arbitrary waveform generators generate user-defined signals in automation and measurement applications. The TE-5201, a singlechannel PXI-based AWG, provides a high-speed waveform to stimulate signal distortion, power line cycle dropouts, video signals, and power supply transients.

PXI/PCI High Speed Digitizers

Model Name	PXI/PCI-9846/9826/9816	PXI-9820/PCI-9820	PCI-9812(A)/PCI-9810
Bus Type	PXI/PCI	PXI / PCI	PCI
Analog Inputs	4-CH	2-CH	4-CH
Sampling Rate	40 MS/s (PXI/PCI-9846) 20 MS/s (PXI/PCI-9826) 10 MS/s (PXI/PCI-9816)	65 MS/s (External) 60 MS/s (Internal)	20 MS/s
Input Resolution (Bits)	16-Bit	14-Bit	12-Bit (PCI-9812/A) 10-Bit (PCI-9810)
Input Ranges	(±1 V, ±0.2 V), (±5 V, ±1 V)	±5 V, ±1 V	±5 V, ±1 V
Input Impedance	50 Ω, 1 ΜΩ	50 Ω, 1.5 MΩ	50 Ω, 1.25 ΚΩ, 1.5 ΜΩ
Al Bandwidth	20 MHz (PXI-9846) 9.6 MHz (PXI-9826) 5.1 MHz (PXI-9816)	30 MHz	19 MHz
Crosstalk, dB	<-80 dB, DC to 1MHz	<-80 dB, DC to 1MHz	<-75 dB, DC to 1MHz
I/O Connector	BNC, SMB	BNC, SMB	BNC
Onboard Memory	512 MB	512 MB, 128 MB	128 Ksamples (PCI-9812A) 32 Ksamples (PCI-9812/9810)
Digital Input	-	2-CH (PXI-9820)	3-CH
Analog Trigger		\checkmark	\checkmark
Ext. Digital Trigger		\checkmark	\checkmark
Ext. Clock	\checkmark	\checkmark	\checkmark
System Synchronization Interface	\checkmark	\checkmark	-
Auto Calibration	\checkmark	\checkmark	-
Page Number	4-3	4-5	4-7

High-Resolution Modules

Model Name	PCI-9524	PCI-9527
Bus Type	PCI	PCI
Bus Mastering DMA	\checkmark	√
Auto-Calibration	\checkmark	\checkmark
Analog Input		
Analog Input Channels	4+4 (4-ch load cell inputs & 4-ch general purpose AD)	2
Max. Sampling Rates (S/s)	Up to 30 K (For details, refer to page 4-9)	432 KS/s
AD Resolution (bits)	24	24
FIFO Size (sample)	256 K	
Input Ranges	For details, refer to page 4-9	±40 Vpp to ±0.316 Vpp
Analog Output		
Voltage Output Channels	2	2
Update Rate (S/s)	5 K	192 KS/s
DA Resolution (bits)	16	24
Settling Time	3 µs	÷
Voltage Output Range	±10 V	± 0.1 V, ± 1 V, ± 10 V
Digital IO, Trigger, Misc		
Digital IO	8 DI, 8 DO (Isolated)	
Digital Trigger		\checkmark
Analog Trigger	-	-
Page Number	4-9	4-10

High Speed Arbitrary Waveform Generator

Page Number

4-15

PXI Switch Modules

PXI/PCI Digital Multimeter

-	1
말만 듯.	2 41 7
1	5
-	

SM2040, SM2042,

SM2044, SMX2040,

SMX2042, SMX2044

SM2060, SM2064 SMX2060, SMX2064

6.5	7.5	
1000/sec	1400/sec, 20000/sec	12
330 mV to 330 V	240 mV to 330 V	15
330 mV to 250 V	240 mV to 330 V	Fanless I/O Platforms
\checkmark	\checkmark	
\checkmark	√	13
SM2042, SM2044, SMX2042, SMX2044	SM2064, SMX2064	cPCI & Industrial Computers
SM2044, SMX2044	SM2064, SMX2064	14
4-13	4-11	14
available		Accessories

Software & Utilities

2

DAQ

3

PXI

PXI/PCI-9816/9826/9846

4-CH 16-Bit 10/20/40 MS/s Digitizers with 512 MB Memory

Features

- **3U Eurocard form factor (PXI version)**
- Standard height, half-length PCI form factor (PCI version)
- Supports 5 V and 3.3 V PCI signals
- Supports the 32-bit /66 MHz PCI interface
- 4 channels of simultaneous single-ended analog input
- 16-bit high resolution A/D converter
- Up to 10 MS/s, 20 MS/s, and 40 MS/s per channel
- 512 MB on-board memory for data storage
- Software selectable 50 Ω or 1 M Ω input impedance Programmable input voltage range: ± 0.2 V / ± 1 V or
- ±1 V/±5 V

5.1 MHz, 9.6 MHz, and 20 MHz analog input bandwidth for the PXI/PCI-9816, PXI/PCI-9826 and PXI/PCI-9846, respectively Multiple module synchronization via the PXI trigger bus or SSI (System Synchronization Interface) Supports scatter-gather DMA transfer

89 dBc SFDR, 79 dBc SINAD and 12.9-bit ENOB (PXI-9816) Fully automated calibration

Operating Systems

- Windows VISTA/XP/2000
- Linux

Recommended Software

- AD-Logger
- VB.NET/VC.NET/VB/VC/BCB/Delphi
- DAQBench

Driver Support

- DAQPilot for Windows
- DAQPilot for LabVIEW[™]
- DAQ-MTLB for MATLAB
- WD-DASK for Linux
- WD-DASK/X for Windows

Introduction

The ADLINK PXI/PCI-9816/9826/9846 are 10 MS/s, 20 MS/s, 40 MS/s sampling 16-bit 4-CH digitizers designed for digitizing high frequency and wide dynamic range signals with an input frequency up to 20 MHz. The analog input range can be programmed via software to $\pm 1 \text{ V} / \pm 0.2 \text{ V}$ or $\pm 5 \text{ V} / \pm 1 \text{ V}$, based on the model. With a deep onboard acquisition memory up to 512 MB, the PXI/PCI-9816/9826/9846 are not limited by the data transfer rate of the PCI bus to enable the recording of waveforms for extended periods of time.

PXI <u>PCI</u>

The PXI/PCI-9816/9826/9846 are equipped with four high linearity 16-bit A/D converters ideal for demanding applications with a high dynamic range such as radar, ultrasound, and software-defined radio.

Specifications

Analog Input

Number of channels: 4 single-ended channels

Input impedance: 50 Ω or 1 M Ω , software selectable

Input coupling: DC

Input range: $(\pm 0.2 \text{ V}, \pm 1 \text{ V})$ or $(\pm 1 \text{ V}, \pm 5 \text{ V})$, depends on model type

ADC resolution: 16 bits, 1 in 65536

Crosstalk: <-80 dB from DC to 1 MHz, for all input ranges

3.0

System noise, unit in LSB_{RMS} :

Input Range	PXI-9816D	PXI-9826D	PXI-9846D	PXI-9846W	PCI-9846D
±0.2 V	5.0	6.0	8.0	15.0	8.0
±ΙV	3.0	4.0	5.0	7.0	5.0
					_
Input Range	PCI-9816H	PCI-9826H	PCI-9846H	PXI-9846H	
±ΙV	5.0	6.0	8.0	8.0	1

5.0

5.0

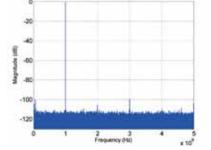
Offset error:

±5 V

Model Name	PXI-9816D/9826D/9846D/9846W, PCI-9846D
Offset error	±0.2 mV
Model Name	PXI-9846H, PCI-9816H/9826H/9846H
Offset error	±0.3 mV

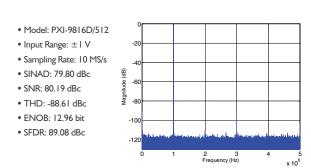
4.0

Gain error


Input Range	PXI-9816D/9826D/9846D/9846W, PCI-9846D
±0.2 V	±0.1%
±IV	±0.05%
Input Range	PXI-9846H, PCI-9816H/9826H/9846H
±IV	±0.1%
±5 V	±0.06%

-3dB Bandwidth, typical:

Γ	Input Range	PXI-9816D	PXI -9826D	PXI/PCI-9846D	PXI-9846DW
	±0.2 V, ±1 V	5.1 MHz	9.6 MHz	20 MHz	80 MHz (± I V) 55 MHz (±0.2 V)
	Input Range	PCI-9816H	PCI-9826H	PXI/PCI-9846H	
	±IV, ±5V	5.1 MHz	9.6 MHz	20 MHz	


Spectral Characteristics

- Model: PXI-9816D/512
- Input Range: ±0.2 V
- Sampling Rate: 10 MS/s
- SINAD: 76.56 dBc
- SNR: 76.59 dBc
- THD: -95.91 dBc
- ENOB: 12.42 bit
- SFDR: 99.73 dBc

Digitizers

Typical values are measured using 1 MHz sine wave input at 10 MS/s with amplitude at -1dB at full scale on a \pm 1 V and \pm 0.2 V range using the PXI-9816. Acquired data lengths are in 64 K point, calculated with Hanning window FFT.

Note that these dynamic parameters may vary from one module to another, with different input signal frequencies and signal amplitudes selected.

For detailed dynamic test results of other modules, please refer to the user manual or visit the ADLINK website.

Timebase

- Sample clock sources
- · Internal: on-board oscillator
- · External: CLK IN (front panel SMB connector), PXI Trigger Bus[0..7], PXI 10 MHz, PXI Star, SSI Bus
- Timebase frequency range
- · PXI/PCI-9816: 1 MHz 10 MHz
- · PXI/PCI-9826: I MHz 20 MHz
- · PXI/PCI-9846: I MHz 40 MHz

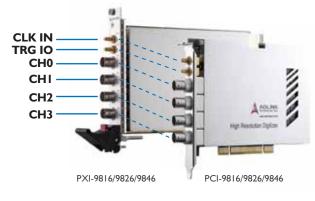
Dedicated External Clock Input From Panel

Connector type: SMB Clock type: sine wave or square wave Input impedance: 50Ω Input coupling: AC Input range: I Vp-p to 2 Vp-p Overvoltage protection: 2.5 Vp-p

Triggering

- Trigger sources:
- software
- TRG IO (front panel SMB connector)
- Analog trigger from CH0 CH3
- PXI Star (PXI version)
- PXI Trigger Bus[0..7] (PXI version)
- SSI (PCI version)
- Trigger modes: Pre-trigger, post-trigger, middle-trigger, delay-trigger

Data Storage and Transfer


On-board memory: 512 MB, shared among the four AI channels Data transfer: scatter-gather DMA

On-board Reference

On-board reference voltage: +5 VTemperature drift: $\pm 3 \text{ ppm/}^{\circ}\text{C}$ Recommended warm-up time: 15 minutes

General Specifications

- I/O Connector
- BNC X4 for analog inputs
- \bullet SMB X2 for external digital trigger and external timebase input
- Dimensions (not including connectors)
- PXI version: Single 3U PXI module, 100 mm by 160 mm
- PCI version: standard height, half length PCI card, 167.64 mm by 106.68 mm

PCI Bus Interface

- PCI signaling: support 3.3 V and 5 V signaling
- PCI interface: 32-bit, 66 MHz
- Operating Environment
- Ambient temperature: 0°C to 55°C (PXI version), 0°C to 50°C (PCI version)
- Relative humidity: 10% to 90%, non-condensing
- Storage Environment
- Ambient temperature: -20°C to 80°C
- Relative humidity: 10% to 90%, non-condensing
- relative hamaly. To to to to to to, non-condensing

Power Requirement, typical:

	Power Rails	PXI/PCI-9816	PXI/PCI-9826	PXI/PCI-9846
	3.3 V	0.8 A	0.8 A	0.8 A
ĺ	5 V	I.4 A	1.5 A	2.0 A
Î	12 V	0.3 A	0.3 A	0.3 A

Certifications

EMC/EMI: CE, FCC Class A

Multi-Module Synchronization

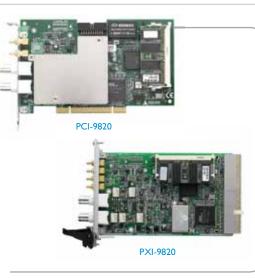
For PXI version of digitizer modules, they can be synchronized through PXI trigger bus, PXI Star and PXI 10 MHz.

For PCI version of digitizer modules, they can be synchronized through a dedicate interface, SSI (System Synchronized Interface).

SSI bus cable for multiple module synchronization

Accessories

- SMB-SMB-IM I meter SMB to SMB cable SMB-BNC-IM I meter SMB to BNC cable ACL-SSI-2 SSI Bus cable for 2 devices
- ACL-SSI-3 SSI Bus cable for 3 devices ACL-SSI-4 SSI Bus cable for 4 devices


Ordering Information

0 1			
Model Name	Sampling Rate	Input Range	-3dB Bandwidth
PXI-9816D/512	10 MS/s	±-1 V, ±0.2 V	5.1 MHz
PXI-9816H/512	10 MS/s	±5V, ±1V	5.1 MHz
PXI-9826D/512	20 MS/s	±I V, ±0.2 V	9.6 MHz
PXI-9846D/512	40 MS/s	± I V, ±0.2 V	20 MHz
PXI-9846DW/512	40 MS/s	± I V, ±0.2 V	80 MHz
PXI-9846H/512	40 MS/s	±5 V, ±1 V	20 MHz
PCI-9816H/512	10 MS/s	±5 V, ±1 V	5.1 MHz
PCI-9826H/512	20 MS/s	±5 V, ±1 V	9.6 MHz
PCI-9846H/512	40 MS/s	±5 V, ±1 V	20 MHz
PCI-9846D/512	40 MS/s	± I V, ±0.2 V	20 MHz

Note: For special features or specifications, such as higher input range or higher bandwidth options, please contact ADLINK for more details. 1Λ

PCI/PXI-9820

2-CH 65 MS/s 14-Bit Digitizers with SDRAM

Features

Supports a 32-bit 3.3 V or 5 V PCI bus PXI specifications Rev. 2.1 compliant 3U Eurocard from factor, CompactPCI compliant (PICMG 2.0 R3.0) (PXI-9820)

14-bit A/D resolution

- Up to 60 MS/s sampling rate per channel with internal timebase Up to 65 MS/s sampling rate per channel with external
- timebase Up to 130 MS/s sampling rate in "ping pong" mode
- 2-CH single-ended bipolar inputs

>30 MHz -3 dB bandwidth

Up to 512 MB onboard SODIMM SDRAM

Programmable ranges of ± 1 V and ± 5 V User-configurable input impedance of 50 Ω or high input

impedance

Scatter-gather DMA

Analog and digital triggering

2-CH synchronous digital inputs (PXI-9820) Fully auto calibration

Multiple modules synchronization capability

Operating Systems

- Windows Vista/XP/2000/2003
- Linux
- Windows CE (call for availability)

Recommended Software

- AD-Logger
- VB.NET/VC.NET/VB/VC++/BCB/Delphi

DAQBench

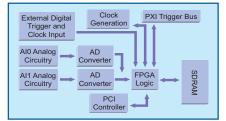
- Driver Support
- DAQPilot for Windows
- DAQPilot for LabVIEW[™]
- DAQ-MTLB for MATLAB®
- WD-DASK for Linux
- WD-DASK/X for Windows

Introduction

ADLINK's PCI/PXI-9820 is a 65 MS/s, high-resolution PXI digitizer with deep SODIMM SDRAM memory. The device features flexible input configurations, including programmable input ranges and user-configurable input impedance. With the deep onboard acquisition memory, the PCI-9820/PXI-9820 is not limited by the 132 MB/s bandwidth of PCI bus and can record the waveform for a long period of time. The PCI-9820/PXI-9820 is ideal for high-speed waveform capturing, such as radar and ultrasound applications, as well as software radio applications, or those signal digitizing applications which need deep memory for data storage.

Analog Input

The PCI/PXI-9820 device features two analog input channels. The small signal bandwidth of each channel exceeds 30 MHz. The input ranges are programmable as either ± 5 V or ± 1 V. The 14-bit A/D resolution makes the PCI/PXI-9820 ideal both for time-domain and frequencydomain applications.


Acquisition System

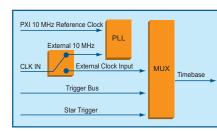
ADLINK PCI/PXI-9820 device uses a pair of 65 MS/s, 14-bit pipeline ADCs to digitize the input signals, and the device provides an internal 60 MHz timebase for data acquisition. The maximum real-time sampling rate is 60 MS/s with internal timebase, and is up to 65 MS/s with external timebase. By using a "ping pong" mode, the sampling rate is up to 120 MS/s with internal timebase or 130 MS/s with external timebase.

Acquisition Memory

The PCI/PXI-9820 device supports different size of SODIMM SDRAM ranging from 128 MB to 512 MB.

The digitized data are stored in the onboard SDRAM before being transferred to the host memory. The PCI/PXI-9820 device uses the scatter-gather bus-mastering DMA to move data to the host memory. If the data throughput from the PCI/PXI-9820 is less than the available PCI bus bandwidth, the PCI/PXI-9820 also features onboard 3 k-sample FIFO to achieve real-time transfer bypassing the SDRAM, directly to the host memory.

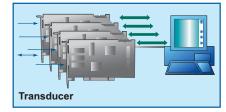
păi *PCI*


Triggering

The PCI/PXI-9820 device features flexible triggering functionalities, such as analog and digital triggering. The analog trigger features programmable trigger thresholds on rising or falling edges on both input channels. The 5 V/TTL digital trigger comes from PXI trigger bus or the external SMB connector for synchronizing multiple devices. Post-trigger, pre-trigger, delay-trigger and middletrigger modes are available to acquire data around the trigger event.

The PCI/PXI-9820 also features repeated trigger acquisition, so you can acquire data in multiple segments coming with successive trigger events at extremely short rearming interval.

Multiple-Module Synchronization


For PCI/PXI-9820, a proprietary bus named SSI (System Synchronization Interface) is designed to synchronize multiple PCI/PXI-9820 devices. SSI provides the timing and trigger synchronization between multiple cards by using a special ribbon cable to all the cards in a daisy-chain configuration. The PCI/PXI-9820 implements star trigger and trigger bus to route timing and trigger signals between one or more PCI/PXI-9820 and other PXI modules. These interfaces allow users to synchronize multiple PXI modules into a system easily. Timebase is also selectable. Users can choose to use the internal clock or the output of the onboard PLL with the reference clock from external clock input, or the PXI I0 MHz reference clock .

Timebase Architecture, for PXI-9820 Only

Calibration

The auto-calibration function of the PCI/PXI-9820 is performed with trim DACs to calibrate the offset and gain errors of the analog input channels. Once the calibration process is done, the calibration constant will be stored in EEPROM such that these values can be loaded and used as needed by the board. Because all the calibration is conducted automatically by software commands, users don't have to adjust trimpots to calibrate the modules manually.

Digitizers

6

PAC

Motion

Real-time Distributed I/O

9

Remote I/C

11

Communi

Visior

19

Fanless I/O

cPCI &

Accessories

Specifications

Analog Input

Number of channels: 2 simultaneous-sampled single-ended

- Resolution: 14 bits
- Maximum sampling rate
- · 65 MS/s for 2 inputs
- · 130 MS/s for Ping-Pong mode using external timebase
- Onboard sample memory
- · 128 MB or 512 MB
- Bandwidth (-3 dB): 30 MHz minimum
- Input signal ranges: (software programmable) ± 5 V, ± 1 V
- Input Coupling: DC

Overvoltage protection

Range	Overvoltage protection
± 5 V	± 14 V
±ΙV	± 5 V

Input Impedance (soldering selectable): 50 Ω , 1.5 M Ω Crosstalk: < -80 dB, DC to I MHz

Total harmonic distortion (THD): -75 dB

Signal-to-Noise ratio (SNR)

Range	SNR
± 5 V	66 dB
±IV	62 dB

Spurious-free dynamic range (SFDR): 75 dB Data transfer: bus-mastering DMA with scatter-gather

Auto Calibration

Onboard reference: +5 V Onboard reference temperature drift: 2 ppm/°C Stability: 6 ppm/1000 Hrs

External Timebase Input

PCI-9820: direct external timebase input PXI-9820: 10 MHz input for PLL or direct external timebase input Connector: SMB Impedance: 50 Ω Coupling: AC Input amplitude: I Vpp to 2 Vpp Overvoltage protection: 2.5 Vpp Frequency range: 500 kHz - 65 MHz

Triggering

Analog Triggering

Modes: pre-trigger, post-trigger, middle-trigger, delay-trigger Sources: CH0 and CH1 Slope: rising/falling Coupling: DC Trigger sensitivity: 256 steps in full-scale voltage range

Digital triggering

Modes: pre-trigger, post-trigger, middle-trigger, delay-trigger Source: external digital trigger from SMB Slope: rising/falling Compatibility: 5 V/TTL Minimum pulse width: 10 ns Repeated trigger rearming interval: 2 cycles of timebase Pre-trigger depth: 128 MB or 512 MB, depending on memory option Post-trigger depth: 128 MB or 512 MB, depending on memory option

Synchronous Digital Input (For PXI-9820 Only) Number of channels: 2

Compatibility: 5 V/TTL

Data transer: bus-mastering DMA with scatter/gather

General Specifications

I/O connector

 \cdot BNC x 2 for analog inputs

- \cdot SMB x 4 for external digital trigger, external time base, and synchronous digital inputs Operating temperature: 0°C to 50°C
- Storage temperature: -20°C to 80°C

Relative humidity: 5% to 95%, non-condensing

Power requirements

Power Rail	Current					
	PXI-9820	PCI-9820				
5 V	900 mA typical	895 mA				
12 V	305 mA typical	295 mA				
3.3 V	360 mA typical (with 128 MB SDRAM)	310 mA (with 128 MB SDRAM)				
3.3 V	500 mA typical (with 512 MB SDRAM)	430 mA (with 512 MB SDRAM)				

Dimensions (not including connectors) PCI-9820: 175 mm x 107 mm PXI-9820: 160 mm x 100 mm

Certifications

EMC/EMI: CE, FCC Class A

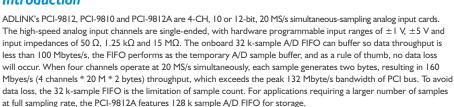
Accessories

Cable	Descri	ption	PXI-9820	PCI-9820
SMB-SMB-1M	I-meter SMB t	o SMB cable	\checkmark	
SMB-BNC-1M	I-meter SMB t	o BNC cable	\checkmark	
ACL-SSI-2	SSI Bus cable f	or 2 devices	-	
ACL-SSI-3	SSI Bus cable f	or 3 devices	-	
ACL-SSI-4	SSI Bus cable f	or 4 devices	-	
	SMB-SMB-TM	\bigcirc	SMB-BN	C-IM
Ordering Info	rmation			
PXI-9820D/128				

2-CH 65 MS/s 14-Bit Digitizer with 128 MB Memory

PXI-9820D/512 2-CH 65 MS/s 14-Bit Digitizer with 512 MB Memory

PCI-9820D/128-0 2-CH 65 MS/s 14-Bit Digitizer with 128 MB Memory PCI-9820D/512-0


2-CH 65 MS/s 14-Bit Digitizer with 512 MB Memory

PCI-9812/9812A/9810

4-CH 10/12-Bit 20 MS/s Simultaneous-Sampling Analog Input Cards

Introduction

DCI

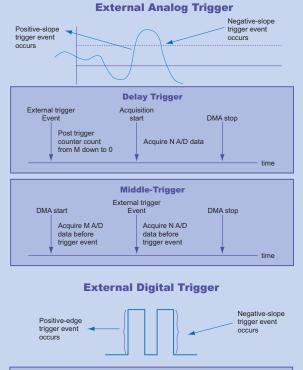
In addition to the onboard 40 MHz time base, users are able to supply the external time base in either sine wave or digital forms. The PCI-9810 and PCI-9812 also feature external digital trigger and programmable analog trigger, thus the conversion start point of multiple cards can be synchronized to external events. The trigger modes include software-trigger, pre-trigger, post-trigger, middle-trigger and delay trigger, further expands the capabilities of these high-speed devices.

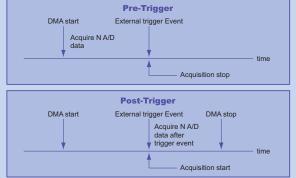
ADLINK's PCI-9812, PCI-9810 and 9812A deliver cost-effective and reliable data acquisition capabilities and are ideal for vibration testing, image digitizing, ultrasonic measurement, biomedical research, ATE and other high-end industrial, scientific, and military applications.

Features

Supports a 32-bit 3.3 V or 5 V PCI bus 12-bit A/D resolution (PCI-9812 and PCI-9812A) 10-bit A/D resolution (PCI-9810) Up to 20 MS/s simultaneous-sampling rate > 17 MHz -3 dB bandwidth 4-CH single-ended inputs Bipolar analog input ranges User-selectable input impedance of 50 Ω or high-input impedance Onboard 32 k-sample A/D FIFO (PCI-9810 and PCI-9812) Onboard 128 k-sample A/D FIFO (PCI-9812A) Analog and digital triggering External clock input for customized conversion rate Bus-mastering DMA for analog inputs 3-CH TTL digital inputs Compact, half-size PCB

Operating Systems


- Windows Vista/XP/2000/2003
- Linux
- Windows CE (call for availability)


Recommended Software

- AD-Logger
- VB.NET/VC.NET/VB/VC++/BCB/Delphi
- DAQBench

Driver Support

- DAQPilot for Windows
- DAQPilot for LabVIEW[™]
- DAQ-MTLB for MATLAB®
- PCIS-DASK for Windows
- PCIS-DASK/X for Linux

Digitizers

Specifications

Analog Input

Number of channels: 4 single-ended Resolution

- \cdot 12-bit (PCI-9812 and PCI-9812A)
- · 10-bit (PCI-9810)
- Maximum sampling rate: 20 MS/s

Input signal ranges, impedance and overvoltage protection

Input RangeModel	Input Impedance	Overvoltage protection
±ΙV	50 Ω	±2 V
±1 V	I5 MΩ	<u> </u>
±5 V	50 Ω	±10 V
	I.25 kΩ	

Accuracy: ±1.5 % typical

DNL: ±0.4 LSB typical, ±1.0 LSB maximum

INL: \pm I.9 LSB typical

Input coupling: DC

Trigger sources: software, analog and digital trigger (5 V/TTL compatible) Trigger modes: software-trigger, pre-trigger, post-trigger,

middle-trigger & delay trigger

FIFO buffer size

· 32 k samples (PCI-9810 & PCI-9812)

· 128 k samples (PCI-9812A)

Data transfers: bus-mastering DMA

Triggering

Analog Trigger

- \cdot Modes: pre-trigger, post-trigger, middle-trigger, delay-trigger
- · Source: CH0, CH1, CH2 and CH3
- · Slope: rising/falling
- · Coupling: DC
- \cdot Trigger sensitivity: 256 steps in full-scale voltage range
- Digital Triggering
- \cdot Modes: pre-trigger, post-trigger, middle-trigger, delay-trigger
- · Source: external digital trigger
- \cdot Slope: rising edge
- · Compatibility: 5 V/TTL
- \cdot Minimum pulse width: 25 ns

External Sine Wave Clock

Input coupling: AC Input impedance: 50 Ω Input frequency: 300 kHz to 40 MHz Input range: 1.0 to 2.0 Vpp Overvoltage protection: 2.5 Vpp

External Digital Clock

Input coupling: DC Input impedance: 50 Ω Compatibility: 5 V/TTL Input frequency: 20 kHz to 40 MHz Overvoltage protection: diode clamping, -0.3 V to +5.3 V

Digital Input

Number of channels: 3 Compatibility: 5 V/TTL with 10 K Ω pull down resistors Overvoltage protection: Diode clamping, -0.3 V to +5.3 V Data transfers: bus-mastering DMA with A/D samples

General Specifications

the second se					
I/O connector					
· BNC x 5					
· 10-pin ribbon male					
Operating temperature	: 0°C to 40°C				
Storage temperature: -20°C to 70°C					
Relative humidity: 5% t	o 95 %, non-condensing				
Power requirements					
Device	L E \/				

Device	+5 V
PCI-9812	I.4 A typical
PCI-9812A	1.1 A typical
PCI-9810	l A typical
	,,

Dimensions (not including connectors) 173 mm x 108 mm

Pin Assignment

(BNC): Analog Inputs & External Sine Wave Clock

CH0	1	Shield: GND
CHI	2	Shield: GND
CH2	3	Shield: GND
CH3	4	Shield: GND
Ext. Sine Wave CLK	5	Shield: GND

Pin Assignment

(Ribbon male): External Digital Clock, Digital Trigger & Digital Inputs							
Ext. Digital CLK 1 2 GND							
Ext. Digital TRIG	3	4	GND				
DI0	5	6	GND				
DII	7	8	GND				
DI2 9 10 GND							

Ordering Information

PCI-9810

4-CH 10-Bit 20 MS/s Simultaneous-Sampling Analog Input Card with 32 k-Sample A/D FIFO

PCI-9812

4-CH 12-Bit 20 MS/s Simultaneous-Sampling Analog Input Card with 32 k-Sample A/D FIFO

PCI-9812A

4-CH 12-Bit 20 MS/s Simultaneous-Sampling Analog Input Card with 128 k-Sample A/D FIFO cPCI & Industr Compu

 1Λ

C

PCI-9524 24-Bit Precision Load Cell Input Card

Introduction

The PCI-9524 is a robust, multi-purpose module designed for turnkey material test systems (MTS). Equipped with four strain gauge-based transducer input channels, four general purpose analog input channels, and a 3-axis motion controller, the PCI-9524 delivers a complete hardware solution for MTS manufacturers. The PCI-9524 easily integrates physical quantity measurement and implements strategy of close-loop control in a single module package. For transducer measurement, the PCI-9524 supports sensitivity from 1.0 mV/V to 4.0 mV/V and provides a 1/200000 accuracy of measurement of full scale. These features make the PCI-9524 suitable for precise measurement in large-scale transducers.

The PCI-9524 is also equipped with four, 24-bit general purpose analog input channels that allow accurate measurements of the LVDT (Linear Variable Differential Transducer) and Linear wire potentiometer signals to achieve high-resolution of displacement.

With motion control capability and 16-bit DA channels, the PCI-9524 comes with three stepper/servo motor axes and two channels of hydraulic system control function. The built-in incremental encoder feedback channels enable the PCI-9524 to implement the stratagem of MTS' closed-loop control.

The impressive PCI-9524 features permit easy implementation of required control or measurement functionalities with just a single module, saving precious development and integration time for MTS manufacturers.

Features

- Transducer Inputs for precise measurement of large-scale transducers
- 4-CH strain gauge-based transducer inputs
- Accuracy up to 1/200,000 counts at full-scale
- \bullet Sensitivity from 1.0 mV/V to 4.0 mV/V
- 2.5 / 10 VDC excitation voltage
- Internal 24-bit A/D resolution

Motion Controller for stepper and hydraulic system control

3-axis motion controller with OUT/DIR output

- 2-CH 16-bit analog outputs
- A-B phase encoder input with 24-bit counter

General-Purpose Analog Inputs for accurate measurements of LVDT¹ and linear wire potentiometer signals

- 4-CH analog input with 24-bit resolution
- Programmable gains of $\pm\,$ 1.25 V, $\pm\,$ 2.5 V, $\pm\,$ 5 V, $\pm\,$ 10 V
- Up to 30 kS/s sampling rate (single channel)
- Note 1: LVDT: Linear Variable Differential Transducer

Supported Operating Systems

- Windows Vista/XP/2000/2003
- Linux

Recommended Application Environments

• VB.NET/VC.NET/VB/VC++/BCB/Delphi

Driver Support

- DAQPilot for Windows
- DAQPilot for LabVIEW[™]
- PCI-DASK for Windows
- PCI-DASK/X for Linux

Applications

• Material test system

The combination of these features makes the PCI-9524 an ideal solution for material testing systems, CNC machines, and civil testing equipment. With all the required functions for measurement and control, the PCI-9524 greatly reduces system development and integration time.

Specifications

4-channel Load Cell transducer input

Excitation voltage: 2.5 V/10 VDC

- Internal A/D resolution: 24 bit Update speed when Auto-zero Disabled
- · Up to 30 KSPS (single channel)
- · Up to 4 KSPS (multi-channel)
- Update speed when Auto-zero Enabled
- · Up to 800 SPS (single channel or multi-channel) Transducer sensitivity: 1.0 mV/V to 4.0 mV/V Number of channels: 1.6
- Accuracy: 1/200000 of full scale
- (with remote sense & auto zero enabled)
- Onboard 256 samples A/D FIFO

Motion Control

Number of axis: 3 Pulse output options: OUT/DIR (26LS31, differential line driver, driving current: up to 20 mA) Maximum output frequency: 500 kHz Encoder Input: 24-bit up/down counter for incremental encoder feedback

General Purpose Analog Input

Resolution: 24-bit Programmable range: ± 1.25 V, ± 2.5 V, ± 5 V, ± 10 V Number of channels: 4 Sampling rate: 30 kS/s (non-multiplexing) Onboard 256 samples A/D FIFO

Isolated Digital Input

Number of channels: 8 Maximum input range (non-polarity): 0 V to 24 V Input resistance: 2.7 K Ω

Isolated Digital Output

Number of channels: 8 Output type: Power MOSFET Sink current: Up to 300 mA/channel

Analog Output

Resolution: 16-bit Output range: ±10 V Number of channels: 2 Update rate: Up to 5 kS/s Onboard I K samples D/A FIFO Driving capability: 5 mA

Terminal Boards

DIN-685-01

Terminal Board with One 68-pin SCSI-II Connector and DIN-Rail Mounting (cables are not included; for information on mating cables, refer to Section 14, Accessories.)

Ordering Information

PCI-9524

24-bit Precision Load Cell Input Card

Pin Assignment

	CNI CN2						
AI0+	34	68	AI0-	PULSE0_A+	34	68	PULSE0_A
VEXEC0+	33	67	VEXEC0-	PULSE0_B+	33	67	PULSE0_B
VEXEC_SEN0+	32	66	VEXEC_SEN0-	ISO5VDD	32	66	ISOGND
N/A	31	65	N/A	PULSE1_A+	31	65	PULSE1_A
Al1+	30	64	Al1-	PULSE1_B+	30	64	PULSE1_B
VEXEC1+	29	63	VEXEC1-	ISO5VDD	29	63	ISOGND
VEXEC_SEN1+	28	62	VEXEC_SEN1-	PULSE2_A+	28	62	PULSE2_A
N/A	27	61	N/A	PULSE2_B+	27	61	PULSE2_B
Al2+	26	60	Al2-	ISO5VDD	26	60	ISOGND
VEXEC2+	25	59	VEXEC2-	ENC0_A+	25	59	ENC0_A
VEXEC_SEN2+	24	58	VEXEC_SEN2-	ENC0_B+	24	58	ENC0_B
N/A	23	57	N/A	ISOPWR	23	57	ISOGND
AI3+	22	56	Al1-	ENC1_A+	22	56	ENC1_A
VEXEC3+	21	55	VEXEC1-	ENC1_B+	21	55	ENC1_B
VEXEC_SEN3+	20	54	VEXEC_SEN1-	ISOPWR	20	54	ISOGND
N/A	19	53	N/A	ENC2_A+	19	53	ENC2_A
AGND	18	52	AGND	ENC2_B+	18	52	ENC2_B
Al4+	17	51	AI4-	ISOPWR	17	51	ISOGND
AI5+	16	50	AI5-	ID10+	16	50	IDI0-
AI6+	15	49	Al6-	IDI1+	15	49	IDI1-
AI7+	14	48	AI7-	IDI2+	14	48	IDI2-
AGND	13	47	AGND	IDI3+	13	47	IDI3-
AGND	12	46	AGND	ISOPWR	12	46	ISOGND
AGND	11	45	AGND	ID14+	11	45	IDI4-
AGND	10	44	AGND	IDI5+	10	44	IDI5-
AGND	9	43	AGND	IDI6+	9	43	IDI6-
AGND	8	42	AGND	IDI7+	8	42	IDI7-
AGND	7	41	AGND	ISOPWR	7	41	ISOGND
AGND	6	40	AGND	ID00	6	40	ID01
AGND	5	39	AGND	ID02	5	39	ID03
DA0_OUT	4	38	AGND	EXT_ISOPWR	4	38	ISOGND
AGND	3	37	AGND	ISOPWR	3	37	ISOGND
DA1_OUT	2	36	AGND	IDO4	2	36	ID05
AGND	1	35	AGND	ID06	1	35	ID07

High-Resolution Modules

Software & Utilities

2

DAQ

PXI 4

5

6 PAC

Motion

8

Real-time Distributed

9

Remote I/C

10

Communi cations

Vision

12

Fanless I/O Platforms

13

PCI & ndustria

14

Accessories

GPIB & Bus Expansion

Output signal range: ± 0.1 , ± 1 , ± 10 Voltage output coupling: DC Triggers Analog Trigger · Purpose: Start trigger · Source: Al0 or Al1 · Level: Full scale input range · Slope: Positive or negative, software selectable · Resolution: 24 bits Digital Trigger · Purpose: Start trigger

- · Source: Ext. Trig
- · Compatibility: 5 V TTL · Polarity: Rising or falling edge
- · Minimum pulse width: 12.5 ns

Internal Timebase Characteristics Clock frequency: 80 MHz

Accuracy: ±20 ppm, over operating temperature range

General Specifications

- Bus Interface: PCI, 32-bit/33 MHz PCI Bus Signaling: Universal PCI, support 3.3 V and 5 V PCI signals Dimensions (not including connectors):
- 106.6 mm (H) x 174.6 mm (W)
- Operating Environment:
- \cdot Ambient temperature range: 0°C to 50°C · Relative humidity range: 10% to 90%,
- non-condensing
- Storage Environment · Ambient temperature range: -20°C to 70°C
- · Relative humidity range: 10% to 90%, non-condensing

Certifications

EMC/EMI: CE, FCC Class A

Introduction

24-Bit High-Resolution Dynamic Signal Acquisition and Generation

The PCI-9527 is a high-performance, 2-CH analog input and 2-CH analog output dynamic signal acquisition board. This board is specifically designed for use in audio testing, acoustic measurement, and vibration analysis applications

The ADLINK PCI-9527 features two 24-bit simultaneous sampling analog input channels. The 24-bit sigmadelta ADC provides a sampling rate up to 432 KS/s at high resolutions, making it idea for higher bandwidth dynamic signal measurements. The sampling rate can be adjusted by setting the onboard DDS clock source to an appropriate frequency. All channels are sampled simultaneously and accept an input range from ±40 V to ± 0.316 V. The PCI-9527 analog input supports software selectable AC or DC coupling and 4 mA bias current for integrated electronic piezoelectric (IEPE) sensors.

The ADLINK PCI-9527 also has two channels of 24-bit resolution, high fidelity analog output. The outputs occur simultaneously at software programmable rates up to 192 KS/s. A software programmable output range of 0.1 V, 1 V, and 10 V is available on the output channels.

For applications requiring multi-channel acquisition, the operation of two or more PCI-9527 can also be synchronize via the System Synchronization Interface (SSI). The PCI-9527 features both analog and digital triggering for signal acquisition. The sources of the trigger can be from software command, analog input channels, external digital trigger input from front panel, or the SSI.

Specifications

Analog Input

Number of simultaneously sampled channels: 2 Input configuration: Differential or pseudo-differential, each channel independently software-selectable Input impedance:

Input Impedance	Differential Configuration	Pseudodifferential Configuration			
Between positive input and system ground	ι ΜΩ	ΙΜΩ			
Between negative input and system ground	ι ΜΩ	50Ω			

Input coupling: AC or DC, software-selectable on each channel ADC resolution: 24-bit ADC type: Delta-sigma Sampling rate: Up to 432 KS/s maximum, I KS/s to 432 KS/s in 454.7 µS/s increments Input signal range: ± 0.316 V, ± 1.00 V, ± 3.16 V, ±10.0 V, ±40.0 V Integrated Electronic Piezoelectric (IEPE) · Current: 4 mA to 10 mA, each channel independently software-selectable · IEPE compliance: 24 V Data transfer: DMA FIFO buffer size: 2048 samples for each analog input channel Analog Output Number of output channels: 2 Output configuration: Differential or pseudodifferential, each channel

independently software-selectable

- DAC resolution: 24-bit
- DAC type: Delta-sigma

Update rate: 192 KS/s maximum

FIFO buffer size: 2048 samples for each analog output channel

Features

- 24-Bit Sigma-Delta ADC and DAC
- 2-CH simultaneous sampling analog input
- 2-CH simultaneous updated analog output
- 432 KS/s maximum sampling rate with software
- programmable rate Programmable input range: ± 40 V, ± 10 V, ± 3.16 V, ± 1 V,
- ±0.316 V
- Programmable output range: ±0.1 V, ±1 V, ±10 V
- AC or DC input coupling, software selectable Trigger I/O connector for external digital trigger signal
- Supports IEPE output on each analog input,
- software-configurable
- Multiple module synchronization interface for high density analog input channels

Supported Operating System

- Windows 7/Vista/XP
- Linux

Recommended Application Environments

• VB.NET/VC.NET/VB/VC++/BCB/Delphi

Driver Support

- DAQPilot for Windows
- DAQPilot for LabVIEW[™]
- DASK for Windows
- DASK/X for Linux

Applications

- Audio testing
- Noise, vibration, and harshness testing
- Machine condition monitoring
- Structure vibration

PCI-9527

SMX2064/2060, SM2064/2060 Series

7-1/2 Digit Digital Multimeters

Features

- Flexible, full-featured auto-ranging DMM
- 7-1/2 digit resolution
- 20,000 readings/second (SMX2064, SM2064)
- 1,400 readings/second (SMX2060, SM2060)
- DC & AC voltage & current, 2-wire, 4-wire,
- 6-wire (SMX2064, SM2064) ohms
- Frequency and time measurements
- **Capacitance & inductance measurements**
- (SMX2064, SM2064)
- Voltage & current sourcing (SMX2064, SM2064)
- Precise trigger capabilities
- 330 V isolation barrier
- Self-calibrating

Plug-and-Play software with graphical user interface

Fully programmable with Visual Basic, C++, LabVIEW[™],etc.

Operating Systems

• Windows 98/NT/2000/XP/2003

Recommended Software

- VB/VC++/BCB/Delphi
- DAQBench

Introduction

The SMX2064/2060 and SM2064/2060 series are 7-1/2 digit high-speed digital multimeters in PXI and PCI form factors, which maintain high accuracy at high measurement rates. The measurement speed is up to 20,000 readings/second for the SMX2064 and SM2064. The SMX206x and SM206x series provides a comprehensive set of DMM capabilities, including 2-wire, 4-wire, and 6-wire guarded resistance measurements; inductance and capacitance; leakage and temperature; frequency and timing; sourcing of voltage and current; and much more. The SMX2064/2060 and SM2064/2060 series digital multimeters are easy to setup and use, have sophisticated analog and digital circuitry to provide repeatable measurements, and are protected to handle any unexpected situation your measurement environment may encounter. With high performance and variable applications, the SMX2064/2060 and SM2064/2060 series are suitable for automated production testing, laboratory automation, and portable/field testing.

Specifications

Specifications subject to change without notice.

For the most current and complete specifications, please refer to the user manual.

DC Functions

DC Voltage Accuracy ± (% of reading + Volts) [
240 mV	Full scale 7- ¹ /2 Digits	Resolution	Input Resistance	24 hours 23°C±1°C	90 Days 23°C±5°C	One Year 23°C±5°C		
240 mV	240.00000 mV	10 nV	>10 GΩ	0.003 + I µV	0.004 + 1.5 μV	0.005 + 2 µV		
2.4 V	2.4000000 V	100 nV	>10 GΩ	0.002 + 3 µV	0.0025 + 5 µV	0.003 + 5 µV		
24 V	24.000000 V	ΙμV	10 MΩ	0.004 + 120 µV	0.005 + 130 µV	0.006 + 150 µV		
240 V	240.00000 V	10 µV	10 MΩ	0.003 + 250 µV	0.004 + 300 µV	0.005 + 0.5 mV		
330 V	330.00000 V	10 μV	10 MΩ	0.005 + 550 µV	0.01 + 700 μV	0.015 + 0.8 mV		

[1] With Aperture set to \geq 0.5 sec, and within one hour from Self Calibration (S-Cal)

DC current

Accuracy \pm (% of reading + Amps) [1]

240 mV	Full scale 7-1/2 Digits	Resolution	Max Burden Voltage	24 hours 23°C±1°C	90 Days 23°C±5°C	One Year 23°C±5°C
240 nA[2]	240.0000 nA	0.1 pA	100 µV	0.07 + 40 pA	0.1 + 45 pA	0.17 + 60 pA
2.4 µA[2]	2.400000 nA	l pA	100 µV	0.05 + 70 pA	0.08 + 90 pA	0.21 + 150 pA
24 µA[2]	24.00000 µA	10 pA	100 µV	0.05 + 400 pA	0.08 + 600 pA	0.13 + 0.8 nA
240 µA[2]	240.000 µA	10 nA	2.5 mV	0.052 + 200 nA	0.07 + 300 nA	0.1 + 400 nA
2.4 mA	2.40000 mA	10 nA	25 mV	0.05 + 300 nA	0.06 + 400 nA	0.07 + 550 nA
24 mA	24.0000 mA	IμA	250 mV	0.05 + 350 nA	0.065 + 450 nA	0.08 + 550 nA
240 m	240.000 mA	100 nA	55 mV	0.05 + 50 µA	0.055 + 60 μA	0.065 + 80 μA
2.4 A	2.40000 A	10 µA	520 mV	0.3 + 60 µA	0.4 + 70 μA	0.45 + 90 μA

[1] With Aperture set to \geq 0.96 sec, and within one hour from zero (Relative control).

[2] Available only with the SMX2064 and SM2064.

2-Wire Resistance

Accuracy \pm (% of reading + Ω) [1]							
Range [3]	Full scale 7- ¹ /2 Digits	Resolution	Source Current	24 hours 23°C±1°C	90 Days 23°C±5°C	One Year 23°C±5°C	
24 Ω[2]	24.000000 Ω	ι μΩ	10 mA	0.0038 + 1.4 mΩ	0.005 + 1.6 mΩ	0.008 + 2 mΩ	
240 Ω	240.00000 Ω	10μΩ	l mA	0.0037 + 4.5 mΩ	0.0046 + 5 mΩ	0.007 + 6 mΩ	
2.4 kΩ	2.4000000 kΩ	100 μΩ	l mA	$0.0023 + 28 \text{ m}\Omega$	0.004 + 32 mΩ	0.006 + 33 mΩ	
24 kΩ	24.000000 kΩ	ImΩ	100 μA	0.0025 + 300 mΩ	0.004 + 330 mΩ	0.006 + 350 mΩ	
240 kΩ	240.00000 kΩ	10 mΩ	10 μA	0.0055 + 3.2 Ω	0.006 + 4 Ω	0.007 + 5 Ω	
2.4 MΩ	2.4000000 MΩ	100 mΩ	IμA	0.018 + 40 Ω	0.03 + 50 Ω	0.04 + 70 Ω	
24 MΩ	24.0000 MΩ	I 00 Ω	100 nA	0.12 + 400 Ω	0.13 + 500 Ω	0.2 + 600 Ω	
240 MΩ[2]	240.000 MΩ	ΙkΩ	10 nA	$0.8 + 20 k\Omega$	I.0 + 30 kΩ	I.3 + 50 kΩ	

[1] With Aperture set to \geq 0.5 Sec, and within one hour from Self Calibration (S-Cal).

[2] Ranges are only with the SMX2064, SM2064.

[3] Test voltages are 2.4 V max with the exception of the 24 Ω and 240 Ω ranges at 240 mV.

4-Wire Resistance

Accuracy \pm (% of reading + Ω) [1]

					, ,	• / • •
Range [3]	Full scale	Resolution	Source	24 hours	90 Days	One Year
	7-1/2 Digits		Current	23°C±1°C	23°C±5°C	23°C±5°C
24 Ω[2]	24.000000 Ω	ι μΩ	10 mA	0.0038 + 0.7 mΩ	0.005 + 0.8 mΩ	0.008 + I mΩ
240 Ω	240.00000 Ω	10 μΩ	l mA	0.0037 + 3 mΩ	0.0046 + 4 mΩ	0.007 + 5 mΩ
2.4 kΩ	2.400000 kΩ	100 μΩ	l mA	0.0023 + 28 mΩ	0.004 + 32 mΩ	0.006 + 33 mΩ
24 kΩ	24.00000 kΩ	ImΩ	100 µA	0.0025 + 300 mΩ	0.004 + 330 mΩ	0.006 + 350 mΩ
240 kΩ	240.00000 kΩ	10 mΩ	10 <i>µ</i> A	0.0055 + 3.2 Ω	0.007 + 4 Ω	0.007 + 5 Ω
2.4 MΩ	2.400000 MΩ	100 mΩ	IμA	0.018 + 40 Ω	0.03 + 50 Ω	0.04 + 70 Ω
24 MΩ	24.0000 MΩ	100 Ω	100 nA	0.12 + 400 Ω	0.13 + 500 Ω	0.2 + 600 Ω

[1] With Aperture set to ≥ 0.5 Sec, and within one hour from Self Calibration (S-Cal).

[2] Ranges are only with the SMX2064, SM2064.

[3] Test voltages are 2.4 V max with the exception of the 24 Ω and 240 Ω ranges at 240 mV.

Software & Utilities

2

DAQ

PXI

PCI &

| A

Accessories

Diode Characterization

Maximum Diode	Available DC current	Typical Current	Typical Voltage Value
Voltage Compliance	Uncertainty	Value	Uncertainty
4 V	100 nA, 1 μA, 10 μA, 100 μA and 0.02% I mA (SMX2064 and SM2064 I0 mA & 12.5 mA)	1%	0.02%

AC Functions

One Year Accuracy \pm (% of reading + Volts), 23 °C \pm 5 °C

Range [3]	Full scale 7- ¹ /2 Digits	Resolution	10 Hz - 20 Hz	20 Hz - 47 Hz	47 Hz - 10 kHz	10 kHz - 50 kHz	50 kHz-100 kHz
240 mV	240.00000 mV	100 nV	3.2 + 430 µV	0.4 + 200 µV	0.15 + 120 μV	0.27 + 230 μV	2.0 + 400 µV
2.4 V	2.4000000 V	ΙμV	3.2 + 2.5 mV	0.4 + 1.7 mV	0.065 + 1.2 mV	0.35 + 1.5 mV	2.1 + 2 mV
24 V	24.000000 V	10 μV	3.3 + 20 mV	0.4 + 16 mV	0.073 + 13 mV	0.22 + 25 mV	1.5 + 40 mV
240 V	240.00000 V	100 μV	3.3 + 200 mV	0.4 + 150 mV	0.06 + 130 mV	0.30 + 200 mV	1.6 + 300 mV
330 V	330.00000 V	100 μV	3.3 + 200 mV	0.45 + 250 mV	0.09 + 230 mV	0.32 + 300 mV	1.6 + 400 mV

AC Current (true RMS)

AC Voltage (true RMS)

One Year Accuracy \pm (% of reading + Amps), 23 $^{\circ}C\pm10\,^{\circ}C$

Range	Full scale	Resolution	Max Burden	10 Hz - 20 Hz[1]	20 Hz - 47 Hz[1]	47 Hz - I kHz[1]	I kHz-10 kHz[1]
	6-1/2 Digits						
2.4 mA	2.400000 mA	l nA	25 mV	2.9 + 4 μA	I.0 + 4 μA	0.12 + 4 μA	0.22 + 4 μA
24 mA	24.00000 mA	10 nA	250 mV	2.8 + 30 µA	I.0 + 30 μA	0.16 + 30 µA	0.4 + 40 μA
240 mA	240.0000 mA	100 nA	55 mV	2.8 + 400 μA	I.0 + 400 μA	0.2 + 220 μA	0.4 + 400 µA
2.4 A	2.400000 A	I μA	520 mV	2.7 + 5 mA	0.9 + 6 mA	0.35 + 4 mA	0.5 + 5 mA
			and the second data and	20111-			

[1] All AC Current ranges have typical measurement capability to 20 kHz.

Time Functions

Frequency and Period

ACV Mode				
Input RMS	Input Impedance	Frequency Range	Period Range	

24 mV - 250 V	I M Ω with < 300 pF	2 Hz - 300 kHz	0.5 s - 3.33 µs	5 1/2 digits	\pm 0.002% of reading
ACI Mode					

ACTITIOUE

1 1 1 1 1		Input Impedance	Frequency Range	Period Range	Resolution	Uncertainty
	range					
	0.33 mA - 2.5 A	10 Ω(3 mA & 30 mA) 0.1 Ω (330 mA & 2.5 A)	2 Hz - 500 kHz	0.5 s - 2.0 µs	5 1/2 digits	\pm 0.01% of reading

Pulse Width

Polarity	Polarity Frequency Range		Width Range	Typical Uncertainty	
Positive or negative pulse widths	2 Hz to 100 kHz	l μs	2μs to Is	0.01% of reading $\pm 4 \mu$ s	

Threshold DAC

	Selected VAC Range	Threshold range (DC level)	Threshold DAC resolution	Highest allowed input Vp-p	Typical one year setting uncertainty
ĺ	240 mV	-1.0 V to +1.0 V	0.5 mV	1.900 V	0.2% + 4 mV
ĺ	2.4 V	-10.0 V to +10.0 V	5.0 mV	19.00 V	0.2% + 40 mV
	24 V	-100.0 V to +100.0 V	50 mV	190.0 V	0.2% + 0.4 V
	240 V	-400 V to 400 V	500 mV	850.0 V	0.2% + 4 V

Totalizer

Active e

euge polarity	Maximum Counc	Allowed rate	Condition
negative transition	10^9	I to 30,000 events per second	Uses Threshold DAC

Capacitance and Inductance Specifications (SMX2064 and SM2064 only)

-	
Cap	acitance

Accuracy \pm (% of reading + farads) [1]

Capacitance				/ (// 0)	reading r larado) [r
Range	Full scale Reading	Resolution	One Year 23°C±5°C	Measurement Time	Measurement Rate (rps)
I,200 pF	1,199.9 pF	0.1 pF	1.5 ± 0.25 pF	52.3 ms	19.1
I 2 nF	11.999 nF	l pF	1.2 ± 5 pF	118 ms	8.5
120 nF	119.99 nF	10 pF	1.0	127 ms	7.9
I.2 μF	1.1999 μF	100 pF	1.0	175 ms	5.7
12 μF	11.999 μF	l nF	1.0	480 ms	2.1
120 µF	119.99 μF	10 nF	1.0	50.3 ms	19.9
I.2 mF	1.1999 mF	100 nF	1.2	151.5 ms	6.6
12 mF	50.000 mF	ΙμF	2	170 ms	5.9

 Within one hour of zero, using relative control. Accuracy is specified for values higher than 5% of the selected range with the exception of the 1,200 pF range.

Inductance

Accuracy \pm (% of reading + henrys)								
Range	Test Frequency	Full Scale 4 1/2 Digits	Resolution	One Year Accuracy 23°C±5°C [1]				
24 µH	75k Hz	33.000 µH	InH	3.0% + 500 nH				
240 μH	50 kHz	330.00 µH	10 nH	2.0% + 3 µH				
2.4 mH	4 kHz	3.3000 mH	100 nH	1.5% + 25 μH				
24 mH	1.5 kHz	33.000 mH	IμH	I.5% + 200 μH				
240 mH	l kHz	330.00 mH	10 µH	2.5 + 3 mH				
2.4 H	I 00 Hz	3.3000 H	100 µH	3.0 + 35 mH				

[1] Accuracy is specified for values greater than 5% of the selected range.

Other measurement functions of SMX2064 and SM2064 6-wire guarded resistance, extended resistance, AC peak-to-peak voltage, AC crest factor, AC median value, leakage current, RTD temperature, thermocouple temperature

Source Function (SMX2064 and SM2064 only)

- DC Voltage Source
- · Output range: -10.000 V to +10.000 V
- · DAC resolution: 18 bits (closed loop), 12 bits (open loop)
- AC Voltage Source
- \cdot Output range: 900 mV to 8 V
- · DAC resolution: 12 bits
- · Frequency range/resolution: I Hz to 200 kHz/2 mHz
- DC Current Source
- \cdot Output range: 1.25 μ A to 12.5 mA

Trigger Functions

Uncertainty

- External Hardware Trigger (at DIN-7 connector)
- \cdot Trigger input voltage level range: +3 V to +15 V
- · Minimum trigger input current: I mA
- Analog Threshold Trigger
- \cdot Trigger point: selectable positive or negative transition of set threshold
- \cdot Captures up to 120 post-trigger readings for apertures > 625 $\mu \rm{s}$
- \cdot Captures up to 80 post-trigger readings for apertures > 625 μs
- Delayed Hardware Trigger
- \cdot Up to 65 m Sec with 1 μ s resolution
- \cdot Up to 1 s with 2 μs resolution

General Specifications

Overload Protection (voltage inputs): 330 VDC, 250 VAC
Isolation: 330 VDC, 250 VAC from earth ground
Maximum Input (Volt x Hertz):
· 8x10 ⁶ volts x Hz normal mode input
· 1x10 ⁶ volts x Hz common mode input
Calibration: Calibrations are performed by Signametrics in a computer at 23 $^\circ\text{C}$
internal temperature rise. All calibration constants are stored in a text file.
Operating Temperature: -10°C to 65°C
Storage Temperature: -40°C to 85°C
Power requirements: +5 V, 300 mA maximum
Dimensions (not including connectors):
· SMX2064/2060: 160 mm x 100 mm
· SM2064/2060: 208 mm x 112 mm
Safety: Designed to IEC 1010-1, Installation Category II

Ordering Information

SMX2064 7- ¹ / ₂ digits PXI Digital Multimeter with LCR Meter
SMX2060 7-1/2 digits PXI Digital Multimeter
SM2064 7-I/ ₂ digits PCI Digital Multimeter with LCR Meter
SM2060

7-1/2 digits PCI Digital Multimeter

SMX2040, SM2040 Series

6-1/2 Digit Digital Multimeters

Introduction

The SMX2040 and SM2040 series are 6-1/2 digit digital multimeters which provide a combination of resolution, accuracy, and speed that surpasses rivals. A 6-1/2 digit display, 0.0045% basic DCV accuracy and 1,000 readings per second assure accurate, fast, and repeatable measurements. The SMX2040 and SM2040 series is designed as a universal, multi-function DMM. Measurements commonly associated with "high-end" system DMMs are standard features with the SMX2040 and SM2040 family, such as 2-wire, 4-wire and 6-wire guarded resistance measurements, inductance and capacitance, leakage and temperature, RMS and peak-to-peak, frequency and timing, sourcing of voltage and current, and much more. The SMX2044 and SM2044 are best suited for applications demanding precision sources with simultaneous measurements such as in parametric testing, while the SMX2040 and SM2040 fit the bill where basic DMM functions are required, such as telecommunication, aerospace, automotive and education fields.

Specifications

Specifications subject to change without notice.

For the most current and complete specifications, please refer to the user manual.

DC Functions

DC Voltage Accuracy ± (% of reading -								
Range	Full scale 6- ¹ /2 Digits	Resolution	Input Resistance	24 hours 23°C±1°C	90 Days 23°C±5°C	One Year 23°C±5°C		
330 mV	330.0000 mV	100 nV	>10 GΩ	0.003 + 4.5 μV	0.004 + 5.5 μV	0.007 + 8 µV		
3.3 V	3.300000 V	I μV	>10 GΩ	0.002 + 10 µV	0.0025 + 12 µV	0.0045 + 17 μV		
33 V	33.00000 V	10 μV	10 MΩ	0.003 + 250 µV	0.004 + 280 µV	0.007 + 330 µV		
330 V	330.0000 ∨	100 µV	10 MΩ	0.004 + 1 mV	0.005 + 1.2 mV	0.008 + 1.5 mV		

[1] With reading rate set to 10 readings per second (rps) or slower, and within one hour of DCV zero, using relative control. Accuracy \pm (% of reading + Amps) [1]

DC Current

	Range	Full scale 5- ¹ /2 Digits	Resolution	Max Burden Voltage	24 hours 23°C±1°C	90 Days 23°C±5°C	One Year 23°C±5°C
	3.3 mA	3.30000 mA	10 nA	350 mV	0.052 + 200 nA	0.07 + 350 nA	0.1 + 400 nA
ĺ	33 mA	33.0000 mA	100 nA	350 mV	0.04 + I µA	0.06 + 2 µA	0.1 + 3 µA
ĺ	330 mA	330.000 mA	IμA	350 mV	0.05 + 30 µA	0.055 + 40 µA	0.075 + 60 µA
[2.5 A	2.50000 A	10 µA	350 mV	0.55 + 50 µA	0.6 + 200 µA	0.65 + 350 µA

[1] With reading rate set to 10 rps or slower, and within one hour of DCI zero, using relative control.

2-Wire and 4-Wire Resistance

	Accuracy \pm ($\%$ of reading \pm Ω) [1]								
Range [3]	Full scale	Resolution	Source	24 hours	90 Days	One Year			
	6-1/2 Digits		Current	23°C±1°C	23°C±5°C	23°C±5°C			
33 Ω[2]	33.00000 Ω	10 μΩ	10 mA	0.0038 + 1 mΩ	0.005 + 1.5 mΩ	0.008+ 2 mΩ			
330 Ω	330.0000 Ω	100 μΩ	l mA	0.0037 + 4.5 mΩ	0.0046 + 5 mΩ	0.007 + 6 mΩ			
3.3 kΩ	3.300000 kΩ	ImΩ	l mA	0.0023 + 28 mΩ	0.004 + 32 mΩ	0.005 + 33 mΩ			
33 kΩ	33.00000 kΩ	10 mΩ	100 µA	0.0025 + 300 mΩ	0.0033 + 330 mΩ	0.006 + 350 mΩ			
330 kΩ	330.0000 kΩ	100 mΩ	10 <i>µ</i> A	0.0055 + 3.2 Ω	0.007 + 4 Ω	0.009 + 5 Ω			
3.3 MΩ	3.300000 MΩ	IΩ	ΙμΑ	0.018 + 40 Ω	0.03 + 50 Ω	0.04 + 70 Ω			
33 MΩ	33.0000 MΩ	100 Ω	100 nA	0.12 + 400 Ω	0.13 + 500 Ω	0.2 + 600 Ω			
330 MΩ[2]	330.00 MΩ	IkΩ	10 nA	I + 50 kΩ	I.4 + 60 kΩ	2.0 + 80 kΩ			

[1] With reading rate set to 2 rps or slower, and within one hour of Ohms zero, using relative control. [2] 33 Ω and 330 M Ω ranges are only available with the SMX2042, SMX2044, SM2042 and SM2044. [3] 4-wire ohms is available up to the 330 k Ω range.

Diode Characterization

Maximum Diode Voltage Compliance	Available DC current Uncertainty	Typical Current Value	Typical Voltage Value Uncertainty
4 V	100 nA, 1 μA, 10 μA, 100 μA and 1 mA (SMX2044 and SM2044: 10 mA constant current plus variable current from 10 nA to 12.5 mA)	1%	0.02%

AC Functions

One Year Accuracy \pm (% of reading + Volts), 23°C \pm 5°C

Range [3]	Full scale 6- ¹ /2 Digits	Resolution	10Hz - 20Hz	20Hz - 47Hz	47Hz - 10kHz	l 0kHz - 50kHz	50kHz-100kHz
330 mV	330.0000 mV	100 nV	3.2 + 430 µV	0.95 + 200 µV	0.15 + 120 µV	0.63 + 230 µV	5.6 + 400 µV
3.3 V	3.300000 V	IμV	3.2 + 2.5 mV	1.0 + 1.7 mV	0.065 + 1.2 mV	0.70 + 1.5 mV	5.3 + 2 mV
33 V	33.00000 V	10 µV	3.3 + 20 mV	1.0 + 16 mV	0.073 + 13 mV	0.35 + 25 mV	2.4 + 40 mV
250 V	250.0000 V	100 µV	3.3 + 200 mV	1.0 + 150 mV	0.06 + 130 mV	0.45 + 200 mV	3.2 + 300 mV

AC Current (true RMS)

AC Voltage (true RMS)

One Year Accuracy ± (% of reading + Volts), 23°C±5°C

Accuracy $\pm (\% \text{ of roading} \pm 0)$ [1]

Range [3]	Full scale 6- ¹ /2 Digits	Resolution	Max Burden Voltage (RMS)	10Hz - 20Hz[1]	20Hz - 47Hz[1]	47Hz - 1kHz[1]	IkHz -10kHz[1]
3.3 mA	3.300000 mA	l nA	350 mV	2.9 + 4 µA	I.0 + 4 μA	0.12 + 4 µA	0.22 + 4 μA
33 mA	33.00000 mA	10 nA	350 mV	2.8 + 30 µA	I.0 + 30 μA	0.16 + 30 µA	0.4 + 40 µA
330 mA	330.0000 mA	100 nA	350 mV	2.8 + 400 µA	1.0 + 400 µA	0.22 + 220 µA	0.6 + 400 µA
2.5 A	2.500000 A	I μA	350 mV	2.7 + 5 mA	0.9 + 6 mA	0.65 + 4 mA	0.7 + 5 mA

Features

- Flexible, full-featured auto-ranging DMM
- 6-1/2 digit resolution

Up to 1,000 readings/second

- DC & AC Volts & Current, 2-Wire, 4-Wire Ohms
- True AC RMS measurements, 10 Hz to 100 kHz
- Measures I µV to 330 V

Frequency Counter | Hz to 300 kHz

- Capacitance, Inductance, Leakage, 6-Wire Guarded Resis tance, Temperature measurements (SMX2042/2044, SM2042/2044)
- 330 V Isolation Barrier

Self-Calibrating

Plug-and-Play, Windows® 98/NT/2000/XP/2003 Language support - Visual Basic, MSVisual C++, Delphi Package support - LabVIEW[™], LabWindows/CVI, TestPoint, ATEasy, Matlab, VBA & more.

Operating Systems

- Windows 98/NT/2000/XP/2003
- Recommended Software
- VB/VC++/BCB/Delphi
- DAQBench

[1] All AC Current ranges have typical measurement capability to 20 kHz.

Software & Utilities

9

DAQ

Time Functions (SMX2042, SMX2044, SM2042 and SM2044)

Frequency and Period

Input RMS	Input Impedance

Input RMS	Input Impedance	Frequency Range	Period Range	Resolution	Uncertainty
Voltage range					
33 mV - 250 V	I M Ω with < 300 pF	I Hz - 300 kHz	l s - 3.33 µs	5 I/2 digits	± 0.002% of reading
ACI Mode					
Input RMS	Input Impedance	Frequency Range	Period Range	Resolution	Uncertainty

mpuciturio	input impedance	inequency name	i citoù nange	resolution	Oncertainty
Voltage range					
0.33 mA - 2.5 A	10 Ω(3 mA & 30 mA) 0.1 Ω (330 mA & 2.5 A)	I Hz - 500 kHz	I s - 2.0 μs	5 1/2 digits	\pm 0.01% of reading

Pulse Width

Polarity	Frequency Range	Resolution	Width Range	Typical Uncertainty
Positive or negative pulse widths	I Hz to 100 kHz	2 µs	2μs to Is	0.01% of reading $\pm 4 \mu s$

Threshold DAC

Selected VAC Range	Threshold range (DC level)	Threshold DAC resolution	Highest allowed input Vp-p	Typical one year setting uncertainty
330 mV	-1.0 V to +1.0 V	0.5 mV	1.900 V	0.2% + 4 mV
3.3 V	-10.0 V to +10.0 V	5.0 mV	19.00 V	0.2% + 40 mV
33 V	-100.0 V to +100.0 V	50 mV	190.0 V	0.2% + 0.4 V
250 V	-500 V to 500 V	500 mV	850.0 V	0.2% + 4 V

Totalizer

Active edge polarity	Maximum Count	Allowed rate	Condition
Positive or negative transition	10^9	I to 30,000 events per second	Uses Threshold DAC

Capacitance and Inductance Specifications (SMX2042, SMX2044, SM2042 and SM2044)

Capacitance	Accuracy \pm (% of reading + farads) [1]
-------------	--

Range	Full scale Reading	Resolution	One Year 23°C±5°C
10 pF	11.999 nF	l pF	2.1 ± 5 pF
100 nF	119.99 nF	10 nF	1.0
l nF	I,199.9 pF	100 nF	1.0
10 μF	11.999 nF	I μF	1.0
100 μF	119.99 nF	10 μF	1.0
l mF	1.1999 μF	100 mF	1.2
10 mF	11.999 µF	L mF	2

[1] Within one hour of zero, using relative control. Accuracy is specified for values higher than 5% of the selected range with the exception of the 10 nF range, which measures down to 0 pF.

Inductance (SM2044 and SMX2044 only)

			Accuracy \pm (% o	f reading + farads) [1]
Range	Test Frequency	Full Scale 4 1/2 Digits	Resolution	One Year Accuracy 23°C±5°C [1]
33 <i>µ</i> H	75 kHz	33.000 µH	l nH	3.0% + 500 nH
330 µH	50 kHz	330.00 µH	10 nH	2.0% + 3 µH
3.3 mH	4 kHz	3.3000 mH	100 nH	I.5% + 25 μH
33 mH	1.5 kHz	33.000 mH	IμH	I.5% + 200 µH
330 mH	l kHz	330.00 mH	10 μH	2.5 + 3 mH
3.3 H	100 Hz	3.3000 H	100 μH	3.0 + 35 mH
[]] Within one hour of zero, and Open Terminal Calibration. Accuracy is specified for values greater than 5% of the selected range.				

Other measurement functions of the SMX2044 and SM2044: 6-wire guarded resistance, AC peak-to-peak voltage, AC crest factor, AC median value, leakage current, RTD temperature, in circuit AC-based capacitance

Source Functions (SMX2044 and SM2044 only)

- DC Voltage Source
- Output range: -10.000 V to +10.000 V
- \cdot DAC resolution: 18 bits (closed loop), 12 bits (open loop) AC Voltage Source
- · Output range: 50 mV to 7.1 VRMs
- · DAC resolution: 16 bits (closed loop), 12 bits (open loop)
- · Frequency range/resolution: 2 Hz to 75 kHz/ 2 Hz
- DC Current Source
- \cdot Output range: 1.25 μ A to 12.5 mA

Trigger Functions

External Hardware Trigger (at DIN-7 connector)

- \cdot Trigger input voltage level range: High: +3 V to +15 V, Low: -15 V to +0.8 V
- Trigger high current drive: Min. I mA, Max 10 mA (TTL or CMOS logic level)
 PXI Bus Hardware Trigger Inputs (at PXI J2)
- Trigger Input: TTL or CMOS positive pulse
- · Trigger Pulse Width: Minimum 250 μ s
- PXI Bus Hardware Trigger Outputs (to PXI J2)
- · Trigger Output: TTL or CMOS negative pulse. Positive edge = ready
- \cdot Trigger Pulse Width: Approximately 140 μ s
- Analog Threshold Trigger
- · Captures up to 64 post-trigger readings
- · Reading rate: 10 rps or higher

General Specifications

- · 8x10⁶ Volt x Hz normal mode input
- · Ix10⁶ Volt x Hz common mode input

Calibration: Calibrations are performed by Signametrics in a computer at a $3\,^\circ\text{C}$

internal temperature rise. All calibration constants are stored in a text file.

Operating Temperature: -10 $^\circ\text{C}$ to 70 $^\circ\text{C}$

Storage Temperature: -65°C to 85°C Power requirements: +5 volts, 300 mA maximum

- Dimensions (not including connectors):
- · SMX2040 series: 160 mm x 100 mm
- · SM2040 series: 208 mm x 112 mm
- Safety: Designed to IEC 1010-1, Installation Category II

Ordering Information

SMX2044 6-1/2 digits PXI LCR Sourcing Digital Multimeter	
SMX2042 6-1/2 digits PXI Multi-Function Digital Multimeter	
SMX2040 6-1/2 digits PXI Digital Multimeter	
SM2044 6-1/2 digits PCI LCR Sourcing Digital Multimeter	
SM2042 6-1/2 digits PCI Multi-Function Digital Multimeter	
SM2040 6-1/2 digits PCI Digital Multimeter	

Features

- 100 MS/s clock
- 10 digits resolution
- Multiple instrument synchronization
- 14-bit vertical resolution
- 2 MS memory depth
- Ultra fast waveform downloads using DMA
- Low phase noise carrier
- Internal trigger generation
- Frequency agility: FSK, ramped FSK, sweep, FM
- Sequence generator controls 128 k segments

Operating Systems

- Windows Vista/XP/2000/2003
- **Recommended Software**
- ARBDetector

Introduction

The TE-5201 is a 100 MS/s, full performance, arbitrary waveform generator on a 3U PXI form factor. The single channel AWG generates waveforms up to 2 MS in length. The clock in/clock out connector provides a synchronized platform for up to six plug-in arbitrary generators, as well as for other plug-in instruments. Built in sequencing technology links up to 4096 memory segments and repeats each segment up to 32 k times.

Specifications

Number of Output Channel: I

Multiple Instrument Synchronization

- Description: Multiple instruments can be connected together and synchronized to provide multi-channel synchronization
- Sample Clock
- · Source: From Master card to slave boards through the local bus
- · Range & Resolution: Same as Sample Clock range and resolution
- · Initial Skew: <15 ns to the first master;15 ns cumulative to additional slaves
- Sample Clock: Internal
- · Range: 50 S/s to 100 MS/s
- \cdot Resolution: 10 digits limited by I μ Hz
- Accuracy: Same as reference
- · Stability: Same as reference
- Standard
- System clock > 0.01% (100 ppm) Option
- - System clock > 0.0001% (1 ppm TCXO) initial tolerance over a 19 °C to 29 °C temperature
- Range; I ppm/ °C below 19 °C and above 29 °C ; I ppm/year aging rate
- External
- 10 MHz TTL, 50 % ±2 % duty cycle

Sample Clock Modulation

- FM
 - · Description: Sample clock can be frequency modulated by internal waveforms that are resident in internal memory (fixed waveforms)
- Modulation Source: Internal sine square, triangle and ramp
- · Modulation Freq. Range: 2 mHz to 100 kHz
- Resolution: 10 digits
- Accuracy: 0.1 %
- · Peak Freq. Deviation: DC 50 MHz
- · Advance: Automatic, triggered, gated or software command
- Marker
 - Output and level same as SYNC output.
 - Position: Fixed at carrier frequency

FM-Downloaded Arbitrary Waveforms

Description: Sample clock can be frequency modulated arbitrary waveforms that are downloaded by the user (user waveforms)

Modulation Source: User waveform, any shape, 10 to 20000 waveform points

- Mod. Sample Clock Range: I mS/s
- · Resolution: 7 digits
- · Accuracy: 0.1%
- Peak Sample Clock Dev: DC to 100 MHz

Advance: Automatic, triggered, gated or software command

- Marker:
- \cdot Output and Level: Same as SYNC output
- · Position: Programmable for selected sample clock frequency
- Waveform Download: 5 M points per second.

FSK

Description: Current segment is sampled continuously. External low TTL level programs carrier sample clock, external high TTL level programs shifted sample clock frequency. Sample clock changes coherently between frequencies. FSK operates in arbitrary waveforms only.

- Carrier Sample Clock Range: 50 S/s to 100 MS/s
- FSK Stimuli
- · External: Front panel Trigger input BNC
- · Low level = carrier sample clock
- \cdot High level = hop frequency
- Frequency: Ranges from 10 MHz to DC
- Internal: Same as internal trigger range
- FSK Delay: Minimum I waveform cycle +50 ns

GPIB & Bus

5

Real-time Distributed

9

Remote I/C

Fanless I/O

Accessories

PAC

Ramped FSK

Description: Same as FSK except carrier sample clock ramps to shifted frequency at a rate defined by the ramp time parameter. External low TTL level programs carrier sample clock, external high TTL level programs shifted frequency Ramp Time Range 10 μs to 1 s, 3 digits, ±0.1 %

Sweep

Description: Sample clock sweeps continuously from start to stop, at a rate defined by the sweep time. More complex sweep modes and types can be generated using the FM mode in conjunction with the FM composer program Type: Linear or logarithmic Direction: Up or down, depending on the start and stop setting Range: 50 mS/s to 100 MS/s Time: I ms to 1000 s, 7 digits, ±0.1 % Advance: Automatic, triggered, gated or software command Marker · Output and Level: Same as SYNC output. · Position: Programmable for selected frequency **Operating Modes** Normal: Continuous waveform is generated

Triggered: Each input cycle generates a single output cycle

Gated: External signal enables generator.

First output cycle synchronous with the active slope of the triggering signal. Last cycle of output waveform always completed $% \left({{{\rm{cycl}}} \right)^{2}} \right)$

External Burst: Preset number of up to 128 k cycles stimulated by an internal, or external.

This mode is not available in Sequencer mode

Trigger Sources

External	· Input: Front panel BNC · Level: TTL		
	 Slope Positive or negative, programmable 		
	· Frequency: 5 MHz to DC		
Internal	· Range: 100 mHz to 2 MHz		
	· Resolution: 7 digits		
	· Accuracy: 0.1%		
Backplane	: TTL Trig0 through TTL Trig7, STAR		
Software:	SCPI command		
System Delay			
Trigger to	waveform out: I Sample Clock + 120 ns		

Standard Waveforms Library

Waveforms: Sine, Triangle, Square, Pulse, Ramp, Sinc, Gaussian Pulse, Exponential decay/Rise Pulse, Noise, DC Frequency Range: Waveform dependent

Arbitrary Waveform

Waveform Memory: I M points, 2 M points optional

- Memory Segmentation
- · Number of Segments: 1 to 64 K (128 K with 2 Mb option)
- · Min Segment Size: 16 points
- Memory Interleave: 4 (All trace lengths must be multiples of 4)
 Vertical Resolution: 14 bits (16,384 points)
- Sine Wave Performance

Sine wave performance is measured using the maximum sample clock rate, at 5 Vpp, the maximum amplitude resolution of the DAC (14-bit) and without filters. Spectrum analyzer settings: Start frequency = 0 MHz; stop frequency = 50 MHz (Nyquist frequency)

Sine wave Total Harmonic Distortion: 0.3 % to 1 MHz

Harmonics and non-related spurious Below 10 MHz · <-55 dBc for carrier frequer

- <-55 dBc for carrier frequencies < I MHz
 <-40 dBc for carrier frequencies <5 MHz
- <-25 dBc for carrier frequencies <25 MHz

Sequenced Arbitrary Waveform

Operation: Permits division of the memory bank into smaller segments. Segments may be linked, and repeated in user-configurable fashion to generate extremely long waveforms

Advance Modes

 Automatic Sequence Advance: No triggers required to step from one segment to the next. Sequence is repeated continuously through a pre-programmed sequence table. Stepped Sequence Advance: Current segment is sampled con tinuously, external trigger advances to next programmed segment. Control input is TRIG IN connector Single Sequence Advance: Current segment is sampled to the end of the segment including repeats and idles there. Next trigger advances to next segment. Control input is the TRIG IN connector

 Mixed Sequence Advance: Each step of a sequence can be programmed to advance either a) automatically (Automatic Sequence Advance), or b) with a trig ger (Stepped Sequence Advance)
 Advance Source: External, internal, or soft trigger

Sequencer steps from: 1 to 4096

Segment loops from: I to I 28 k

Outputs

- Waveform Output · Connector: Front panel BNC
- · Stand-by: Output Off or Normal
- · Impedance: 50 Ω , ±1 %
- · Protection: Protected against temporary short to case ground
- · Amplitude:
- Range: 80 mVpp to 8 Vpp, at 50 Ω load; 160 mVpp to 16 Vpp, for open circuits Resolution: 3.5 digits
- Accuracy (1 kHz):
- ±(1%+25 mV), 1.000 V to 10 Vpp
- ±(1%+5 mV), 80 mV to 999.9 mVpp
- Offset: Offset is attenuated with amplitude
- Range: 0 to ± 3.6 V, amplitude dependent
- Resolution: 22 mV
- Accuracy
- ± 4 V window $\pm (1$ % of reading +1 % if amplitude +2 mV)
- \pm 400 mV window \pm (1 % of reading + 1 % if amplitude +200 μ V)
- \cdot Filters: 25 MHz and 50 MHz, 7-pole elliptic

Square Wave, Pulse

Rise/Fall time: < 10 ns, 10 % to 90 % of amplitude Aberration: < 5 % SYNC/Marker Output Description: Provides dual functionality. All functions and modes, this output generates sync pulse, which is synchronous with the output wave form. In FM and sweep modes only, this output generates a marker having properties similar to the sync pulse output Connector: Front panel BNC Impedance: 50 Ω , ± 1 % Level: > 2 V into 50 Ω , 4 V nominal into 10 k Ω Protection: Protected against temporary short to case ground Position: Point 0 to n, Programmable with 4-point resolution

Sine Output

Description: An output that is directly derived from the sample clock generator and has an output frequency equal to the programmed sample clock frequency. This output generates sine waveforms that corresponds to sample clock setting, including modulated waveform, such as FM, sweep and FSK Connector: Front panel SMB Impedance: $50 \Omega, \pm 1 \%$ Level: 1 V into 50Ω Protection: Protected against temporary short to case ground Source: Sample clock frequency Frequency Range and Resolution: Same as Sample clock Flatness: -3 dB at 100 MHzTotal Harmonic Distortion: <40 dBc to 1 MHzHarmonics & non-related spurious: <50 dBc to 10 MHz

Trigger Input

Connector: Front panel BNC	Impedance: 10 k., ±5%
Threshold Level: TTL	Minimum Pulse Width: 20 ns
Slope: Positive or negative going edge	

10 MHz Reference Input

Connector: Front panel SMB Threshold Level: TTL

Impedance: 10 k Ω , ±5 % Duty Cycle: 50 %, ±5 %

Ordering Information

TE-5201 100 MS/s Arbitrary Waveform Generator

Introduction

To meet the needs of a wide range of uses in the measurement and automation field, switches come in a variety of types and sizes for versatile applications. It is important to understand the different types of switches available before selecting the most appropriate switch configuration.

Characteristics

Switches are generally separated into 3 forms, single-pole single-throw (SPST), single-pole double-throw (SPDT), and double-pole double-throw (DPDT). The pole is the source wire, while the throw refers to the switch position. A direct application of SPST switches is to close or open a circuitry (Figure 1). A SPDT switch has one source wire and two switch positions. The contact of the SPDT switch stays on the normally closed (NC) position. When the SPDT switch is excited, then the contact changes the position to the normally open (NO) position (Figure 2). The DPDT switch consists of 2 SPDT switches operating at the same time. The other classification of switches is done by forms, Form A, Form B, Form C and Form D. Form A refers to a normally open SPST switch is called a 1 Form A switch.

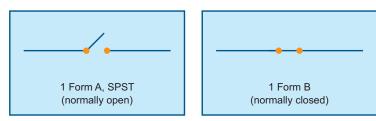


Figure 1 (Form A, Form B)

Form C is a single-pole double-throw (SPDT) switch with "break-before-make" functionality, while Form D is also a SPDT switch, but with "make-before-break" functionality. In Figure 2, the switch on the left is a "I Form C", which chooses two signals to connect with the source wire; the switch on the right is a "2 Form C" switch, which is DPDT as previously described.

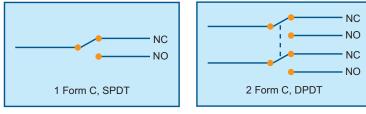


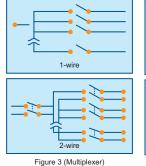
Figure 2 (Form C, 2 Form C)

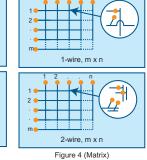
PXI-7921, 24-CH 2-Wire Multiplexer

PXI-7901, General-Purpose Switch

Functions

General-Purpose (GP) Switches


General purpose switches contain several independent relays which are isolated from each other. GP switches are commonly used to connect one input to one output and are usually built with Form A or Form C relays. The normal usage of GP switches is to turn on or turn off devices, such as motors, fans, heaters, and lights.


Multiplexers (MUX)

In test applications, the quantity of instruments is usually lower due to high cost. Thus, to connect multiple units under test (UUT) with the testing instrument, a multiplexer is always the choice to make the maximum utilization of the instruments. A I-wire multiplexer routes single-ended signals to one point, and a 2-wire multiplexer selects differential signals. A 4-wire multiplexer is usually used to measure low resistance or RTDs. The instruments which are often used with multiplexer include DMM, digitizer and signal source, such as AWG, to provide both measurement and excitation.

Matrix

Matrix switches provide the most versatile switching capacity among these function topologies. In the matrix, any input can connect to any output individually or in combination. Unlike the multiplexer, the matrix can connect the source or measurement instrument to multiple UUTs at the same time. Matrix' advantage is the save of wiring. When users want to change the configurations of measurement or excitation, users just change the internal connection path, and do not have to manually reconfigure the wiring.

Switches

Software & Utilities

2

DAQ

PXI

4

5

GPIB & Bus Expansion

6

PAC

Motion

8

9

PXI-7901 16-CH General-Purpose SPDT Relay Module

Features

compliant

(PICMG 2.0 R3.0)

Switching capacity

• 220 VDC, 250 VAC

safety status

relay safety status

and star trigger

DAQBench

Driver Support

Operating Systems

Fully software programmable

Windows Vista/XP/2000/2003

Recommended Software

• VB/VC++/BCB/Delphi

ADL-SWITCH for Windows

• 3 A switching, 3 A carrying

PXI specifications Rev. 2.2 compliant

3U Eurocard form factor, CompactPCI compliant

16-CH SPDT (I Form C) non-latching relays

125 operations per second for full settling

Design for safety-critical applications

PICMG 2.1 R2.0 CompactPCI Hot Swap specifications

Onboard | k-sample scan list for deterministic scanning

Handshaking signals for external instruments synchronization

Hardware emergency shutdown with programmable relay

Watchdog timer from 1 ms to 420 s with programmable

8 auxiliary 3.3 V/TTL digital inputs/outputs with 5 V tolerance

Multiple modules synchronization through PXI trigger bus

Introduction

ADLINK's PXI-7901 is a general-purpose (GP) switch module implementing 16-CH independent single-pole double-throw (SPDT) relays (I Form C). The PXI-7901 can connect one input to one output and be used as signal switching and routing for measurement systems or ATE. Thanks to its high switching capacity, PXI-7901 can also be used to turn on or turn off devices such as motors, fans, heaters, and lights.

The contact position of the relays can be changed either by direct software commands or by following the instructions previously stored in the onboard scan list. The scan list advances upon the trigger from external measurement devices, such as a DMM. The scan list could also advance when the scan-delay timer expires. In the PXI-7901, PXI trigger functions are supported and software programmable. Multiple modules can therefore be synchronized without additional field wiring.

Specifications

Relay Characteristics

Number of channels: 16 Relay type: SPDT (I Form C), non-latching Switching capacity

- · Max. switching current: 3 A
- · Max. switching voltage: 220 VDC, 250 VAC
- · Max. switching power: 50 VA, 60 W
- · Max. carrying current: 3 A
- Contact resistance: 150 mQ max.
- · Relay set/reset time
- · Operate time: 5 ms max.
- · Release time: 5 ms max.
- · Bounce time: 3 ms max.
- Expected life
- · Mechanical life: 108 operations min.
- · Electrical life : 105 operations min. (0.4 A @ 125 VAC, resistive load)
- Data transfer: Programmed I/O

Auxiliary Digital I/O

Numbers of channel: 8 inputs/outputs Compatibility: 3.3 V/TTL (5 V tolerant)

Handshaking Signals

- Programmable polarity
- Logic level: 3.3 V/TTL (5 V tolerant)
- TRG IN source: AUX1, PXI trigger bus,
- PXI star trigger input
- S ADV destination: AUX0, PXI trigger bus, PXI star trigger outputs (in the star trigger slot)

Safety Functions

- Emergency shutdown
- · Logic level: 3.3 V/TTL (5 V tolerant)
- · Active: logic low
- Watchdog timer
- · Base clock available: 10 MHz, fixed · Counter width: 32-bit

General Specifications

- I/O Connector: 62-pin D-sub male Operating temperature: 0°C to 55°C Storage temperature: -20°C to 70°C Relative humidity: 5% to 85% non-condensing
- Power requirements: (when all relays are ON)

Device	+5 V	+3.3 V
PXI-7901	700 mA	400 mA

Dimensions (not including connectors) · 160 mm x 100 mm

Certifications

EMC/EMI: CE. FCC Class A

Terminal Boards

TB-6201-01

General-Purpose Switch Terminal Board with one 62-Pin D-Sub Female Connector (Cables are not included. For information on mating cables, refer to Section 14, Accessories)

	Pin Assignment		
CNI			
	22. COM0		
43. NO0	23. COMI	I. NC0	
44. NO I	24. COM2	2. NCI	
45. NO2	25. COM3	3. NC2	
46. NO3	26. COM4	4. NC3	
47. NO4	27. COM5	5. NC4	
48. NO5	28. COM6	6. NC5	
49. NO6	29. COM7	7. NC6	
50. NO7	30. COM8	8. NC7	
51. NO8	31. COM9	9. NC8	
52. NO	32. COMI0	10. NC9	
53. NO10	33. COMII	II.NCI0	
54. NO I I	34. COM12	12. NCI I	
55. NO12	35. COM13	13. NC12	
56. NO13	36. COM14	14. NC13	
57. NO14	37. COM15	15. NC14	
58. NO15	38. N/C	16. NC15	
59. N/C	39. N/C	17. N/C	
60. AUX3	40. AUX4	18. AUX2/SHDN	
61. AUX6	41. +5Vout	19. AUX5	
62. AUX7	42. AUX I/TRG_IN	20. GND	
		21. AUX0/S AD	

Ordering Information

PXI-7901

- 16-CH General-Purpose SPDT Relay Module
- * Failure rate indicates the lower limit of switching capacity of a relay contact at a reliability level of 60 %

Real-time Distributed Remote I/C Communi cations Visior

12 Fanless I/O

cPCI 8

 1Λ

PXI-792 I 24-CH 2-Wire Multiplexer Module

Features

compliant

(PICMG 2.0 R3.0)

Switching capacity

• 220 VDC, 125 VAC

safety status

relay safety status

Operating Systems

Fully software programmable

Windows Vista/XP/2000/2003

Recommended Software

• VB/VC++/BCB/Delphi

• ADL-SWITCH for Windows

and star trigger

• DAQBench

Driver Support

• 2 A switching, 2 A carrying

Design for safety-critical applications

PXI specifications Rev. 2.2 compliant

3U Eurocard form factor, CompactPCI compliant

24-CH DPDT (2 Form C) non-latching relays

PICMG 2.1 R2.0 CompactPCI Hot Swap specifications

Onboard 1 k-sample scan list for deterministic scanning

Handshaking signals for external instruments synchronization

Hardware emergency shutdown with programmable relay

Watchdog timer from 1 ms to 420 s with programmable

Multiple modules synchronization through PXI trigger bus

Introduction

ADLINK's PXI-7921 is a relay multiplexer which consists of 24 2-wire relays (DPDT, 2 Form C). As a multiplexer, the PXI-7921 provides 48x1 I-wire, 24x1 2-wire and 12x1 4-wire configurations. Users could choose one of the configurations by software. The PXI-7921 typically connects one instrument, such as a DMM, a digitizer or a signal source, with many points which need measurement or excitation.

The contact position of the relays can be changed either by direct software commands or by following the instructions previously stored in the onboard scan list. The scan list advances upon the trigger from external measurement devices, such as a DMM. The scan list could also advance when the scan-delay timer expires. In the PXI-7921, PXI trigger functions are supported and software programmable. Multiple modules can therefore be synchronized without additional field wiring.

Specifications

• •	
Source Wire	Multiplexer
I-wire	One 48x1
2-wire	One 24x1,
	Two I2xI, Four 6xI
4-wire	One I 2xI

Relay Characteristics

- Number of channels: 24 (2-wire) Relay type: DPDT (2 Form C), non-latching Switching capacity • Max. switching current: 2 A
- · Max. switching voltage: 220 VDC, 125 VAC
- · Max. switching power: 60 W
- \cdot Max. carrying current: 2 A
- Contact resistance: $100 \text{ m}\Omega$ max.
- Relay set/reset time
- \cdot Operate time: 4 ms max.
- · Release time: 4 ms max. Expected life
- Expected life
- Mechanical life: 108 operations min.
- Electrical life : 5x105 operations min.
- (I A @ 30 VDC, resistive load) Data transfer: programmed I/O

Handshaking Signals

Programmable polarity Logic level: 3.3 V/TTL (5 V tolerant) TRG_IN source: PXI trigger bus, PXI star trigger input S_ADV destination: PXI trigger bus, PXI star trigger outputs (in the star trigger slot)

Safety Functions

- Emergency shutdown
- · Logic level: 3.3 V/TTL (5 V tolerant)
- · Active with logic low
- Watchdog timer
- Base clock available: 10 MHz, fixed
 Counter width: 32-bit

General Specifications

- I/O Connector: 62-pin D-sub male Operating temperature: 0°C to 55°C Storage temperature: -20°C to 70°C Relative humidity: 5% to 85% non-condensing
- Power requirements: (when all relays are ON)

 Device
 +5 V
 +3.3 V

 DVI 7001
 LA
 400 mA

PXI-7921	ΙA	40
Certifications		

EMC/EMI: CE, FCC Class A

Terminal Boards

TB-6221-01

Multiplexer Switch Terminal Board with One 62-Pin D-Sub Female Connector (Cables are not included. For information on mating cables, refer to Section 14, Accessories)

Pin Assignment			
CNI			
	22. +5Vout		
43. COM2+	23. CH8+	I. CH0+	
44. COM2-	24. CH8-	2. CH0-	
45. COM3+	25. CH9+	3. CHI+	
46. COM3-	26. CH9-	4. CHI-	
47. CH18+	27. CHI0+	5. CH2+	
48. CH18-	28. CH10-	6. CH2-	
49. CH19+	29. CHII+	7. CH3+	
50. CH19-	30. CHI I-	8. CH3-	
51. CH20+	31. CH12+	9. CH4+	
52. CH20-	32. CH12-	10. CH4-	
53. CH2I +	33. CH13+	11. CH5+	
54. CH21-	34. CH13-	12. CH5-	
55. CH22+	35. CH14+	13. COM0+	
56. CH22-	36. CH14-	14. COM0-	
57. CH23+	37. CH15+	15. COMI +	
58. CH23-	38. CH15-	I6. COMI-	
59. I WireloRef	39. CHI6+	17. CH6+	
60. TRG_IN	40. CH16-	18. CH6-	
61.S_ADV	41. CH17+	19. CH7+	
62. SHDNn	42. CH17-	20. CH7-	
		21. GND	

Ordering Information

PXI-7921

- 24-CH 2-Wire Multiplexer Module
- * Failure rate indicates the lower limit of switching capacity of a relay contact at a reliability level of 60 %

400 mA

Features

PXI specifications Rev. 2.2 compliant 3U Eurocard form factor, CompactPCI compliant (PICMG 2.0 R3.0) PICMG 2.1 R2.0 CompactPCI Hot Swap specifications compliant Configuration determined by terminal board Up to 32 cross-point DPDT (2 Form C) non-latching relays Contact rating • 2 A switching, 2 A carrying • 220 Vpc, 125 Vac Onboard 1 k-sample scan list for deterministic scanning Handshaking signals for external instruments synchronization Design for safety-critical applications Hardware emergency shutdown with programmable relay safety status Watchdog timer from 1 ms to 420 s with programmable relay safety status 8 auxiliary 3.3 V/TTL digital inputs/outputs with 5 V tolerance Multiple modules synchronization through PXI trigger bus and star trigger Versatile matrix configuration with terminal board Fully software programmable **Operating Systems** • Windows Vista/XP/2000/2003

Recommended Software

- VB/VC++/BCB/Delphi
- DAOBench

Driver Support

• ADL-SWITCH for Windows

Introduction

ADLINK's PXI-7931 is a matrix module with 32 cross-point 2-wire relays (DPDT, 2 Form C). The default configuration of the PXI-7931 is a 4-group 2x4 2-wire matrix. With the terminal board, TB-6231-01, users could flexibly choose one of the configurations: one 4x8, two 4x4, one 2x16, two 2x8 and four 2x4. Any contact of the PXI-7931 can connect to other contacts, individually or in combination. The PXI-7931 matrix module simplifies the wiring and makes it easy to change the internal connection path.

The contact position of the relays can be changed either by direct software commands or by following the instructions previously stored in the onboard scan list. The scan list advances upon the trigger from external measurement devices, such as a DMM. The scan list could also advance when the scan-delay timer expires. In the PXI-7931 the PXI trigger functions are supported and software programmable. Multiple modules can therefore be synchronized without additional field wiring.

Specifications

Source Wire	Multiplexer
2-wire	One 4x8, Two 4x4, One
	2x16, Two 2x8, Four 2x4

Relay Characteristics

- Number of cross points: 32 (2-wire) Relay type: DPDT (2 Form C), non-latching
- Switching capacity
- · Max. switching current: 2 A
- · Max. switching voltage: 220 VDC, 125 VAC
- Max. switching power: 60 W
- · Max. carrying current: 2 A
- Contact resistance: 100 mΩ max. Relay set/reset time
- · Operate time: 4 ms max.
- · Release time: 4 ms max.
- Expected life
- · Mechanical life: 108 operations min.
- · Electrical life : 5x105 operations min.
- (I A @ 30 VDC, resistive load)
- Data transfer: programmed I/O

Auxiliary Digital I/O

Numbers of channel: 8 inputs/outputs Compatibility: 3.3 V/TTL (5 V tolerant)

Handshaking Signals

- Programmable polarity
- Logic level: 3.3 V/TTL (5 V tolerant) TRG_IN source: AUX1, PXI trigger bus, PXI star
- trigger input
- S ADV destination: AUX0, PXI trigger bus, PXI star trigger outputs (star trigger slot)

Safety Functions

- Emergency shutdown
- · Logic level: 3.3 V/TTL (5 V tolerant)
- · Active: logic low
- Watchdog timer
- · Base clock available: 10 MHz, fixed · Counter width: 32-bit

General Specifications

I/O Connector: 62-pin D-sub male Operating temperature: 0°C to 55°C Storage temperature: -20°C to 70°C Relative humidity: 5% to 85% non-condensing

- Power requirements: (when all relays are ON)
- Device +5 V +3.3 V
 - PXI-7931 IA 400 mA
- Dimensions

160 mm x 100 mm (not including connectors)

Certifications

EMC/EMI: CE, FCC Class A

Terminal Boards

TB-6231-01

Multiplexer Switch Terminal Board with One 62-Pin D-Sub Female Connector (Cables are not included. For information on

mating cables, refer to Section 14, Accessories				
Pin Assignment				
43. C0+	23. C8-	I. R0+		
44. C0-	24. C9+	2. R0-		
45. CI +	25. C9-	3. RI +		
46. CI-	26. CI0+	4. RI-		
47. C2+	27. CI0-	5. R2+		
48. C2-	28. CI I +	6. R2-		
49. C3+	29. CI I-	7. R3+		
50. C3-	30. CI2+	8. R3-		
51. C4+	31. CI2-	9. R4+		
52. C4-	32. CI3+	10. R4-		
53. C5+	33. CI3-	11. R5+		
54. C5-	34. CI4+	12. R5-		
55. C6+	35. CI4-	13. R6+		
56. C6-	36. CI5+	14. R6-		
57. C7+	37. CI5-	15. R7+		
58. C7-	38. N/C	16. R7-		
59. N/C	39. N/C	17. N/C		
60. AUX3	40. AUX4	18. AUX2/SHDN		
61. AUX6	41. +5Vout	19. AUX5		
62. AUX7	42. AUX I/TRG_IN	20. GND		
		21. AUX0/S_AD		

Ordering Information

PXI-7931

- 4x8 2-Wire Matrix Module
- * Failure rate indicates the lower limit of switching capacity of a relay contact at a reliability level of 60 %

 1Δ

Motion -Real-time Distributed I/O 9 Remote I/C Communi cations Visior Fanless I/O Platforms PCI & dustri omput Accessories

Switches

Software & Utilities

2

DAQ

PXI

4

5

GPIB & Bus Expansion

6

PAC