

PCI-7841/cPCI-7841/PM-7841/
PMC-7841/PMC-7841G

Dual-Port Isolated
CAN Interface Card

User’s Guide

Recycled Paper

©Copyright 2003 ADLINK Technology Inc.

All Rights Reserved.

Manual Rev. 2.21: October 14, 2003

Part No: 50-11109-100

The information in this document is subject to change without prior
notice in order to improve reliability, design, and function and does not
represent a commitment on the part of the manufacturer.

In no event will the manufacturer be liable for direct, indirect, special,
incidental, or consequential damages arising out of the use or inability to
use the product or documentation, even if advised of the possibility of
such damages.

This document contains proprietary information protected by copyright.
All rights are reserved. No part of this manual may be reproduced by
any mechanical, electronic, or other means in any form without prior
written permission of the manufacturer.

Trademarks

PCI-7841, cPCI-7841, PM-7841, PMC-7841 and PMC-7841G are
registered trademarks of ADLINK Technology Inc. Other product names
mentioned herein are used for identification purposes only and may be
trademarks and/or registered trademarks of their respective companies.

Getting Service from ADLINK
Customer Satisfaction is top priority for ADLINK TECHNOLOGY INC. If
you need any help or service, please contact us.

ADLINK TECHNOLOGY INC.
Web Site http://www.adlinktech.com
Sales & Service Service@adlinktech.com
TEL +886-2-82265877 FAX +886-2-82265717
Address 9F, No. 166, Jian Yi Road, Chungho City, Taipei, 235 Taiwan

Please email or FAX your detailed information for prompt, satisfactory,
and consistent service.

Detailed Company Information
Company/Organization

Contact Person

E-mail Address

Address

Country

TEL FAX

Web Site

Questions
Product Model

Environment

OS:
Computer Brand:
M/B: CPU:
Chipset: BIOS:
Video Card:
NIC:
Other:

Detail Description

Suggestions for ADLINK

Table of Contents • i

Table of Contents

Chapter 1 Introduction ... 1

1.1 PCI/cPCI/PM/PMC-7841(G) Features 2
1.2 Applications ... 3
1.3 Specifications .. 4

Chapter 2 Installation ... 7

2.1 Before Installing the PCI/cPCI/PM/PMC-7841(G)................. 7
2.2 Installing the PCI/PMC-7841(G).. 8
2.3 Installing the cPCI-7841 .. 11
2.4 Installing the PM-7841... 13
2.4 Jumper and DIP Switches... 14
2.5 Base Address Setting.. 15
2.6 IRQ Level Setting .. 17

Chapter 3 Function Reference..................................... 19

3.1 Functions Table... 20
3.1.1 PORT_STRUCT structure define..................................... 22
3.1.2 PORT_STATUS structure define 25
3.1.3 CAN_PACKET structure define 27
3.1.4 DEVICENET_PACKET structure define 27

3.2 CAN LAYER Functions ... 29

Introduction • 1

1

Introduction

The PCI/cPCI/PM/PMC-7841(G) is a Controller Area Network (CAN)
interface card used for industrial PCs with PCI, Compact-PCI, and
PC104 bus that supports dual port CAN interfaces running
independently or bridged simultaneously. The built-in CAN controller
provides bus arbitration and error detection with auto correction and
re-transmission functions. The PCI cards are Plug and Play therefore it
is not necessary to set any jumpers for matching the PC environment.

The CAN (Controller Area Network) is a serial bus system originally
developed by Bosch for use in automobiles, and is increasingly
becoming the standard used in industry automation. It’s multi-master
protocol, real-time capability, error correction, and high noise immunity
make it especially suited for intelligent I/O devices control networks.

The PCI/cPCI/PM/PMC-7841(G) is programmed by using the ADLINK‘s
software library. The programming of this PCI card is as easy as AT bus
add-on cards.

2 • Introduction

1.1 PCI/cPCI/PM/PMC-7841(G) Features

The PCI-7841 is a Dual-Port Isolated CAN Interface Card with the
following features:

• Two independent CAN network operation

• Bridge support

• Compatible with CAN specification 2.0 parts A and B

• Optically isolated CAN interface (up to 2500Vrms
isolation protection)

• Direct memory mapping to the CAN controllers

• Up to 1Mbps programmable transfer rate

• PCI bus Plug and Play

• DOS library and examples included

The cPCI-7841 is a Dual-Port Isolated CAN Interface Card with the
following features:

• Two independent CAN network operation

• Bridge support

• Compatible with CAN specification 2.0 parts A and B

• Optically isolated CAN interface (up to 2500Vrms
isolation protection)

• Direct memory mapping to the CAN controllers

• Up to 1Mbps programmable transfer rate

• PCI bus Plug and Play

• compact-PCI industry bus

• DOS library and examples included

The PM-7841 is a Dual-Port Isolated CAN Interface Card with the
following features:

• Two independent CAN network operation

• Bridge support

• Compatible with CAN specification 2.0 parts A and B

Introduction • 3

• Optically isolated CAN interface (up to 2500 Vrms
isolation protection)

• Direct memory mapping to the CAN controllers

• Up to 1Mbps programmable transfer rate

• DIP-Switch for base address configuration

• Software Programmable Memory-Mapped Address

• PC-104 industry form factor

• DOS library and examples included

The PMC-7841(G) is a Dual-Port Isolated CAN Interface Card with the
following features:

• Two independent CAN network operation

• Bridge support

• Compatible with CAN specification 2.0 parts A and B

• Optically isolated CAN interface (up to 2500 Vrms
isolation protection)

• Direct memory mapping to the CAN controllers

• Up to 1Mbps programmable transfer rate

• PCI bus Plug and Play

• Specifically designed for use in GEME embedded
systems

1.2 Applications

• Industry automation

• Industry process monitoring and control

• Manufacture automation

• Product testing

4 • Introduction

1.3 Specifications

PCI-7841 Specification Table
Ports 2 CAN channels (V2.0 A, B)
CAN Controller SJA1000
CAN Transceiver 82c250
Signal Support CAN_H, CAN_L
Isolation Voltage 2500 Vrms
Connectors Dual DB-9 male connectors
Operation Temperature 0 – 60° C
Storage Temperature -20° – 80° C
Humidity 5% – 95% non-condensing
IRQ Level Set by Plug and Play BIOS
I/O port address Set by Plug and Play BIOS
Power Consumption
(without external devices)

400mA @5VDC (Typical)
900mA @5VDC (Maximum)

Size 132(L)mm x 98(H)mm

cPCI-7841 Specification Table
Ports 2 CAN channels (V2.0 A, B)
CAN Controller SJA1000
CAN Transceiver 82c250
Signal Support CAN_H, CAN_L
Isolation Voltage 2500 Vrms
Connectors Dual TB 5P connectors
Operation Temperature 0 – 60° C
Storage Temperature -20° – 80° C
Humidity 5% – 95% non-condensing
IRQ Level Set by Plug and Play BIOS
I/O port address Set by Plug and Play BIOS
Power Consumption
(without external devices)

400mA @5VDC (Typical)
900mA @5VDC (Maximum)

Size 132(L)mm x 98(H)mm

Introduction • 5

PM-7841 Specification Table
Ports 2 CAN channels (V2.0 A, B)
CAN Controller SJA1000
CAN Transceiver 82c250/82c251
Signal Support CAN_H, CAN_L
Isolation Voltage 1000 Vrms
Connectors Dual 5 male connectors
Operation Temperature 0 ~ 60° C
Storage Temperature -20° – 80° C
Humidity 5% – 95% non-condensing
IRQ Level Set by Jumper
I/O port address Set by DIP Switch
Memory Mapped Space 128 Bytes by Software
Power Consumption
(without external devices)

400mA @5VDC (Typical)
900mA @5VDC (Maximum)

Size 90.17(L)mm x 95.89(H)mm

PMC-7841 (G) Specification Table
Ports 2 CAN channels (V2.0 A, B)
CAN Controller SJA1000
CAN Transceiver 82c250
Signal Support CAN_H, CAN_L
Isolation Voltage 2500 Vrms
Connectors Dual DB-9 male connectors
Operation Temperature 0 – 60° C
Storage Temperature -20° – 80° C
Humidity 5% – 95% non-condensing
IRQ Level Set by Plug and Play BIOS
I/O port address Set by Plug and Play BIOS
Power Consumption
(without external devices)

400mA @5VDC (Typical)
900mA @5VDC (Maximum)

Size PMC-7841: 156(L)mm x 74(H)mm
PMC-7841G: 149(L)mm x 74(H)mm

Installation • 7

2

Installation

This chapter describes how to install the PCI/cPCI/PM/PMC-7841(G).
Please carefully review the package contents and unpacking information.

2.1 Before Installing the PCI/cPCI/PM/PMC-7841(G)
The PCI/cPCI/PM/PMC-7841(G) card contains sensitive electronic
components that can be easily damaged by static electricity.

The card should be used on a grounded anti-static mat. The operator
should be wearing an anti-static wristband, grounded to the same point
as the anti-static mat.

Inspect the card module carton for obvious damage. Shipping and
handling may cause damage to the module. Be sure there is no shipping
and handing damage on the module before processing.

After opening the card module carton, extract the system module and
place it only on a grounded anti-static surface, component side up.

Note: DO NOT APPLY POWER TO THE CARD IF IT HAS BEEN
DAMAGED.

You are now ready to install your PCI/cPCI/PM/PMC-7841(G).

8 • Installation

2.2 Installing the PCI/PMC-7841(G)

What’s Included
In addition to this User's Manual, the package includes the following
items:

• PCI/PMC-7841 Dual Port PCI Isolated CAN Interface Card

• ADLINK All-In-One CD-ROM

If any of these items are missing or damaged, contact the dealer from
whom you purchased the product. Save shipping materials and carton to
ship or store the product in the future.

PCI-7841 Layout

PMC-7841 Layout

P0

P1

JP1

JP2

Installation • 9

PMC-7841G Layout

Terminator Configuration

A 120Ω terminal resistor is installed for each port; JP1 enables the
terminal resistors for p0 and JP2 enables the terminal resistors for p1

10 • Installation

Connector Pins

P0 and P1 are CAN connectors as shown below:

CANL

Shield

CANH

DIP-9

1

5

6

9

Installation • 11

2.3 Installing the cPCI-7841

What’s Included
In addition to this User's Manual, the package includes the following
items:

• cPCI-7841 Dual Port Compact-PCI Isolated CAN Interface
Card

• ADLINK All-In-One CD-ROM

If any of these items are missing or damaged, contact the dealer from
whom you purchased the product. Save shipping materials and carton to
ship or store the product in the future.

cPCI-7841 Layout

Terminator Configuration

A 120Ω terminal resistor is installed for each port; JP1 enables the
terminal resistor for J1 and JP2 enables the terminal resistor for J2.

Connector Pin Define
J1 and J2 are CAN connectors as shown below:

JP1 J1

J2

JP2

12 • Installation

2 3 4 5

C
A

N
_L

C
A

N
_H

Sh
ie

ld

1

Installation • 13

2.4 Installing the PM-7841

What’s Included
In addition to this User's Manual, the package includes the following
items:

• PM-7841 Dual Port PC-104 Isolated CAN Interface Card

• ADLINK All-In-One CD-ROM

If any of these items are missing or damaged, contact the dealer from
whom you purchased the product. Save shipping materials and carton to
ship or store the product in the future.

PM-7841 Layout

JP1

JP2

J1

J2

14 • Installation

Terminator Configuration

A 120Ω terminal resistor is installed for each port, while JP1 enables the
terminal resistor for J1 and JP2 enables the terminal resistor for J2.

Connector Pin Define
J1 and J2 are CAN connectors as shown below:

2 3 4 5
C

A
N

_L

C
A

N
_H

Sh
ie

ld
1

2.4 Jumper and DIP Switches
The output of each channel and base address are configurable by setting
jumpers and DIP switches on the PM-7841. The card's jumpers and
switches are preset at the factory. Under normal circumstances, there
jumper settings should not need adjustment.

A jumper switch is closed ("shorted") with the plastic cap inserted over
two pins of the jumper. A jumper is open with the plastic cap inserted
over one or no pin(s) of the jumper.

Installation • 15

2.5 Base Address Setting
The PM-7841 requires 16 consecutive address locations in the I/O
address space. The base address of the PM-7841 is restricted by the
following conditions.

1. The base address must be within the range 200hex to 3F0hex.

2. The base address should not conflict with any PC reserved I/O
address.

The PM-7841's I/O port base address is selectable by a 5 position DIP
switch SW1 (refer to Table 2.1). The address settings for I/O ports from
Hex 200 to Hex 3F0 are described in Table 2.2 below (active low). The
default base address of the PM-7841 is set to hex 200 in the factory (see
Figure below).

 SW1 : Base Address = 0x200

1 2 3 4 5

ON

 A (8 7 6 5 4)
Figure Default Base Address Configuration

16 • Installation

I/O port

address(hex)
fixed
A9

1
A8

2
A7

3
A6

4
A5

5
A4

200-20F
OFF
(1)

ON
(0)

ON
(0)

ON
(0)

ON
(0)

ON
(0)

210-21F
OFF
(1)

ON
(0)

ON
(0)

ON
(0)

ON
(0)

OFF
(1)

:

(*) 2C0-2CF
OFF
(1)

ON
(0)

OFF
(1)

OFF
(1)

ON
(0)

ON
(0)

:

300-30F
OFF
(1)

OFF
(1)

ON
(0)

ON
(0)

ON
(0)

ON
(0)

:

3F0-3FF
OFF
(1)

OFF
(1)

OFF
(1)

OFF
(1)

OFF
(1)

OFF
(1)

(*): default setting ON : 0

X: don't care OFF : 1

Note: A4, ..., A9 correspond to PC-104(ISA) bus address lines.

Installation • 17

2.6 IRQ Level Setting
A hardware interrupt can be triggered by the external Interrupt signal
(JP3 and JP4).

The jumper setting is specified as below:

Note: Be certain that there are no other add-on cards sharing the same
interrupt level in the system.

(IRQ)

 9 7 6 5 3 X 15 12 11 10

Interrupt Default Setting = IRQ15

IRQ Setting

Function Reference • 19

3

Function Reference

The cPCI/PCI/PMC-7841(G) functions are organized into the following
sections:

♦ CAN layer functions

• Card Initialization and configuration functions

• CAN layer I/O functions

• CAN layer status functions

• CAN layer Error and Event Handling functions

Specific associated functions are presented in this chapter.

20 • Function Reference

3.1 Functions Table

CAN layer functions

Function Type Function Name Page
PM-7841 Initial PM7841_Install() 29

GetDriverVersion() 29
CanOpenDriver() 31
CanCloseDriver() 32
CanConfigPort() 33

CanDetectBaudrate() 34
CanEnableReceive() 37
CanDisableReceive() 38
CanSendMsg() 39
CanRcvMsg() 40

CanGetRcvCnt() 55
CanClearOverrun() 41
CanClearRxBuffer() 42
CanClearTxBuffer() 43
CanGetErrorCode() 44
CanGetErrorWarningLimit() 44
CanSetErrorWarningLimit() 47
CanGetRxErrorCount() 49
CanGetTxErrorCount() 49
CanSetTxErrorCount() 51
CanGetPortStatus() 52
CanGetLedStatus()1 53

CanSetLedStatus()1 54

Function Reference • 21

Error and Event handling functions

Operation System Function Name Page
CanInstallCallBack() 56

DOS
CanRemoveCallBack() 58

Windows 95/98/NT CanInstallEvent() 62

Note: Only for the compactPCI and PC-104 versions.

22 • Function Reference

3.1.1 PORT_STRUCT structure define

The PORT_STRUCT structure defines the mode of id-mode, acceptance
code, acceptance mask, and baud rate of a physical CAN port. It is used
by the CanPortConfig(), and CanGetPortStatus() functions.

typedef struct _tagPORT_STRUCT
{

int mode; // 0 for 11-bit; 1 for 29-bit

 DWORD accCode, accMask;

 int baudrate;

 BYTE brp, tseg1, tseg2; // Used only if baudrate = 4

 BYTE sjw, sam; // Used only if baudrate = 4

 }PORT_STRUCT;

Members

 mode: 0 means using 11-bit in CAN-ID field

 1 means using 29-bit in CAN-ID field.

 accCode: Acceptance Code for CAN controller.

 accMask: Acceptance Mask for CAN controller.
accCode and accMask is used to assign the accept ID for CAN
controller.
Example 1: You want to accept all IDs.

Can ID=accCode ^ accMask=0xff.
Example 2: You want to accept only ID1 and ID2,

ID=ID1+ID2=0x01 + 0x02=0x03;
So you may set as follows,

 acccode=0x03;
 accMask=0x00;
 Example 3: You want to accept all ID except ID1 and ID2
 ID1=0x01,ID2=0x02
 ID=ID1+ID2=0x03
 accCode=0
 accMask=0x7fc

 baudrate: Baudrate settings for the CAN controller.

Value Baudrate
0 125kbps

Function Reference • 23

1 250kbps
2 500kbps
3 1Mbps
4 User-Defined

 brp, tseg1, tseg2, sjw, sam: Use for User-Defined Baudrate

Bit interpretation of bus timing register0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
sjw.1 siw.0 brp.5 brp.4 brp.3 brp.2 brp.1 brp.0

* Baud Rate Prescaler (BRP, brp): The period of CAN system clock Tscl is
programmable and determines the individual bit timing. The CAN system
clock is calculated using the following equation: Tscl = 2 * Tclk * (32* brp.5 +
16*brp.4 + 8*brp.3 + 4*brp.2 + 2*brp.1 + brp.0 + 1)
where Tclk = time period of the XTAL frequency =1/16MHz

brp=32* brp.5 + 16*brp.4 + 8*brp.3 + 4*brp.2 + 2*brp.1 + brp.0

* Synchronization Jump Width (SJW, sjw)

Tsjw = Tscl* (2*sjw.1 + sjw.0 + 1)
sjw=2*sjw.1+sjw.0

Bit interpretation of bus timing register1
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
sam tseg2.2 tseg2.1 tseg2.0 tseg1.3 tseg1.2 tseg1.1 tseg1.0

Sampling (SAM)

BIT VALUE Function
1 triple; the bus is sampled three times;

recommended for low/medium speed buses
(class A and B) where filtering spikes on the
bus line is beneficial
 SAM

0 single; the bus is sampled once;
recommended for high speed buses (SAE
class C)

Sam=SAM;
* Time Segment 1 (TSEG1) and Time Segment 2 (TSEG2)
TSEG1 and TSEG2 determine the number of clock cycles per bit period and
the location of the sample point, where:

Tsyncseg = 1* Tscl
Ttseg1 = Tscl * (8* tseg1.3 + 4* tseg1.2 + 2*tseg1.1 + tseg1.0 + 1)
Ttseg2 = Tscl * (4* tseg2.2 + 2 *tseg2.1 + tseg2.0 + 1)

24 • Function Reference

For example:

Possible values are brp=000001, tseg1=0101, and tseg2=010.

For example:
If you set brp=000001, tseg1=0101, tseg2=010, then

Tscl=2 * Tclk * (32* brp.5 + 16*brp.4 + 8*brp.3 + 4*brp.2 + 2*brp.1 +
brp.0 + 1)

=2 * Tclk * (1 + 1)
=1/4MHz

Ttseg1= Tscl * (8* tseg1.3 + 4* tseg1.2 + 2*tseg1.1 + tseg1.0 + 1)
= Tscl * (4+ 1+1)
=Tscl * 6

Ttseg2= Tscl * (4* tseg2.2 + 2 *tseg2.1 + tseg2.0 + 1)
= Tscl * (2+1)
= Tscl * 3

Can controller Baudrate=1/(Tsyncseg+Ttseg1+Ttseg2)
=1/Tscl(1+6+3)
=4MHz/10=250kHz

See Also

CanPortConfig(),CanGetPortStatus(), and PORT_STATUS structure

Function Reference • 25

3.1.2 PORT_STATUS structure define

The PORT_STATUS structure defines the status register and
PORT_STRUCT of CAN port. It is used by the CanGetPortStatus()
functions.

typedef struct _tagPORT_STATUS

{

 PORT_STRUCT port;

 PORT_REG status;

}PORT_STATUS;

Members

 port: PORT_STRUCT data

 status : status is the status register mapping of CAN
controller.

typedef union _tagPORT_REG

{

 struct PORTREG_BIT bit;

 unsigned short reg;

}PORT_REG;

struct PORTREG_BIT

{

 unsigned short RxBuffer: 1;

 unsigned short DataOverrun: 1;

 unsigned short TxBuffer: 1;

 unsigned short TxEnd: 1;

 unsigned short RxStatus: 1;

 unsigned short TxStatus: 1;

 unsigned short ErrorStatus: 1;

26 • Function Reference

unsigned short BusStatus: 1;

unsigned short reserved: 8;

};

See Also

CanGetPortStatus(), and PORT_STATUS structure

Function Reference • 27

3.1.3 CAN_PACKET structure define

The CAN_PACKET structure defines the packet format of CAN packets.
It is used by the CanSendMsg(), and CanRcvMsg() functions.

typedef struct _tagCAN_PACKET

{

DWORD CAN_ID;

BYTE rtr;

BYTE len;

BYTE data[8]

DWORD time;

BYTE reserved

}CAN_PACKET;

Members

CAN_ID :CAN ID field (32-bit unsigned integer)

rtr :CAN RTR bit.

len :Length of data field.

data :Data (8 bytes maximum)

time :Reserved for future use

reserved :Reserved byte

See Also

CanSendMsg(), and CanRcvMsg()

3.1.4 DEVICENET_PACKET structure define

28 • Function Reference

The DEVICENET_PACKET structure defines the packet format of
DeviceNet packets. It is widely used by the DeviceNet layer functions.

typedef struct _tagDEVICENET_PACKET

{

BYTE Group;

BYTE MAC_ID;

BYTE HostMAC_ID;

BYTE MESSAGE_ID;

BYTE len;

BYTE data[8];

DWORD time;

BYTE reserved;

}DEVICENET_PACKET;

Members

 Group: Group of DeviceNet packets.

 MAC_ID: Address of destination.

 HostMAC_ID: Address of source.

 MESSAGE_ID: Message ID of DeviceNet packet.

 len: Length of data field.

 data: Data (8 bytes maximum).

See Also

SendDeviceNetPacket(), and RcvDeviceNetPacket()

Function Reference • 29

3.2 CAN LAYER Functions

 CAN-layer Card Initialization Functions

PM7841_Install(base, irq_chn, 0xd000)

Purpose Get the version of driver

Prototype C/C++

int PM7841_Install(int baseAddr, int irq_chn, int
memorySpace)

Parameters baseAddr: Base Address of PM-7841(DIP Switch)

Irq_chn: IRQ channel (Jumpper)

MemorySpace: Memory Mapping Range

Return Value A signed integer

0: Successful

-1: Failed

Remarks PM7841 is PC104(ISA) CAN interface card. It will
need 32-bytes I/O space and 1K memory space.

See Also none

Usage C/C++

 #include “pm7841.h”

int ret;

ret = PM7841_Install(

baseAddr,

irq_ch,

memorySpace);

30 • Function Reference

GetDriverVersion()

Purpose Get the version of driver

Prototype C/C++

 WORD GetDriverVersion(void)

Parameters none

Return Value A 16-bit unsigned integer

High byte is the major version

Low byte is the major version

Remarks Call this function to retrieve the version of current
using driver. This function is for your program to get
the version of library and dynamic-linked library.

See Also none

Usage C/C++

 #include “pci7841.h”

WORD version = GetDriverVersion();

majorVersion = version >> 8;

minorVersion = version & 0x00FF;

Function Reference • 31

CanOpenDriver()

Purpose Open a specific port, and initialize driver.

Prototype C/C++

int CanOpenDriver(int card, int port))

Parameters card: index of card

port: index of port

Return Value Return a handle for open port

-1 if error occurs

Remarks Call this function to open a port

Under DOS, you will receive –1 if there is not
enough memory. If writing program for the Windows
system. It will return -1, if you want to open a port
had been opened. You must use CanCloseDriver()
to close the port after using.

See Also CanCloseDriver()

Usage C/C++

#include “pci7841.h”

int handle = CanOpenDriver();

CanSendMsg(handle, &msg);

CanCloseDriver(handle);

32 • Function Reference

CanCloseDriver()

Purpose Close an opened port, and release driver.

Prototype C/C++

int CanCloseDriver(int handle)

Parameters handle: handle retrieve from CanOpenDriver()

 Port: index of port

Return Value Return 0 if successful

-1 if error occurs

Remarks Call this function to close a port.

See Also CanOpenDriver()

Usage See usage of CanOpenDriver().

Function Reference • 33

CanConfigPort()

Purpose Configure properties of a port

Prototype C/C++

int CanConfigPort(int handle, PORT_STRUCT
*ptrStruct)

Parameters handle: handle retrieve from CanOpenDriver()

 ptrStruct: a pointer of PORT_STRUCT type

Return Value Return 0 is successful

-1 if error occurs

Remarks Configure a port that had been opened.

The properties of a CAN port such as baud rate,
acceptance code, acceptance mask, operate mode.
After configuration is over, the port is ready to send
and receive data.

See Also 3.1.1 PORT_STRUCT structure define

Usage C/C++

#include “pci7841.h

PORT_STRUCT port_struct;

int handle = CanOpenDriver(0, 0); // Open port
0 of card 0

port_struct.mode = 0; // CAN2.0A
(11-bit CAN id)

port_struct.accCode = 0; // This setting of
acceptance code and

port_struct.accMask = 0x7FF; // mask enable all
MAC_IDs input

port_struct.baudrate = 0; // 125K bps

CanConfigPort(handle, &port_struct);

CanCloseDriver(handle);

34 • Function Reference

CanDetectBaudrate()

Purpose Perform auto-detect baud rate algorithm.

Prototype C/C++

 int CanDetectBaudrate(int handle, int miliSecs)

Parameters handle: handle retrieve from CanOpenDriver()

MiliSecs: timeout time (ms)

Return Value Return –1 if error occurs

Otherwise the baudrate

Value Baudrate
0 125kbps
1 250kbps
2 500kbps
3 1Mbps

Remarks Call this function to detect the baud rate of a port.

The function performs an algorithm to detect your
baud rate. It needs that there are activities on the
network. It will return a –1 when detecting no activity
on the network or time was exceeded.

See Also none

Usage C/C++

#include “pci7841.h

PORT_STRUCT port_struct;”

int handle = CanOpenDriver();

port_struct.mode = 0; // CAN2.0A (11-bit CAN
id)

port_struct.accCode = 0; // This setting of
acceptance code and

Function Reference • 35

port_struct.accMask = 0x7FF; // mask enable all
MAC_IDs input
port_struct.baudrate = CanDetectBaudrate(handle,
1000):

CanConfigPort(handle, &port_struct);

CanCloseDriver(handle);

Visual Basic(Windows 95/98/NT)

36 • Function Reference

CanRead()

Purpose Direct read the register of PCI/PMC-7841(G).

Prototype C/C++

BYTE CanRead(int handle, int offset)

Parameters handle: handle retrieve from CanOpenDriver()

offset: offset of register

Return Value Return data read from port.

Remarks Direct read the register of PCI/PMC-7841(G).

See Also CanWrite()

Usage none

CanWrite()

Purpose Direct write the register of PCI/PMC-7841(G).

Prototype C/C++

void CanWrite(int handle, int offset, BYTE data)

Parameters handle: handle retrieve from CanOpenDriver()

Offset: offset of register

data: data write to the port

Return Value none

Remarks Call this function to directly write a register of
PCI/PMC-7841(G)

See Also CanRead()

Usage none

Function Reference • 37

 CAN-layer I/O Functions

CanEnableReceive()

Purpose Enable receiving of a CAN port.

Prototype C/C++

void CanEnableReceive(int handle);

Parameters handle: handle retrieve from CanOpenDriver()

Return Value none

Remarks Call this function to enable receiving.

Any packet on the network that can induce a
interrupt on your computer. If that packet can pass
your acceptance code and acceptance mask setting.
So if your program doesn’t want to be disturbed.
You can call CanDisableReceive() to disable
receive and CanEnableReceive() to enable
receives.

See Also CanDisableReceive()

Usage none

38 • Function Reference

CanDisableReceive()

Purpose Disable receive of a CAN port.

Prototype C/C++

void CanDisableReceive(int handle);

Parameters handle: handle retrieve from CanOpenDriver()

Return Value none
Remarks Please refer the CanEnableReceive()

See Also CanEnableReceive()

Usage none

Function Reference • 39

CanSendMsg()

Purpose Send can packet to a port

Prototype C/C++

int CanSendMsg(int handle, CAN_PACKET
*packet);

Parameters handle: handle retrieve from CanOpenDriver()

packet: CAN_PACKET data

Return Value Return 0 if successful

-1 if error occurs

Remarks Send a message to an opened CAN port.

Actually, this function copies the data to the sending
queue. Error occurs when the port has not been
opened yet or the packet is a NULL pointer. You
can use the Error and Event handling functions to
handle the exceptions.

See Also CanRcvMsg()

Usage C/C++

#include “pci7841.h

PORT_STRUCT port_struct;

CAN_PACKET sndPacket, rcvPacket;

int handle = CanOpenDriver(0, 0); // open the
port 0 of card 0

CanConfigPort(handle, &port_struct);

CanSendMsg(handle, &sndPacket);

if(CanRcvMsg(handle, &rcvPacket) == 0)

{
}

CanCloseDriver(handle);

40 • Function Reference

CanRcvMsg()

Purpose Receive a can packet from a port

Prototype C/C++

int CanSendMsg(int handle, CAN_PACKET
*packet);

Parameters handle: handle retrieve from CanOpenDriver()

packet: CAN_PACKET data

Return Value Return 0 is successful

-1 if error occurs

Remarks Receive a message from an opened CAN port.

There is only a 64-byte FIFO. It can store from 3 to
21 packets. So there are memory buffer under
driver. When data comes, the driver would move it
from card to memory. It starts after your port
configuration is done. This function copies the buffer
to your application. So if your program has the
critical section to process the data on the network.
We suggest that you can call the CanClearBuffer()
to clear the buffer first. Error would be happened
most under the following conditions:

1. You want to access a port that has not be
opened.

2. Your packet is a NULL pointer.
3. The receive buffer is empty.

You can use the Status handling functions to handle the exceptions.

See Also CanSendMsg()

Usage See the CanSendMsg()

Function Reference • 41

 CAN-layer Status Functions

CanClearOverrun()

Purpose Clear data overrun status

Prototype C/C++

void CanClearOverrun(int handle)

Parameters handle: handle retrieve from CanOpenDriver()

Return Value none

Remarks Clear the data overrun status

Sometimes if your system has heavy load, and the
bus is busy, the data overrun would be signaled. A
Data Overrun signals that data is lost, possibly
causing inconsistencies in the system.

See Also CanRcvMsg()

Usage C/C++

#include “pci7841.h

int handle = CanOpenDriver(0, 0); // open the
port 0 of card 0

….

CanClearOverrun(handle);

CanCloseDriver(handle);

42 • Function Reference

CanClearRxBuffer()

Purpose Clear data in the receive buffer

Prototype C/C++

void CanClearRxBuffer(int handle)

Parameters handle: handle retrieve from CanOpenDriver()

Return Value none

Remarks Clear the data in the receive buffer

There are 2-type of buffer defined in the driver. First
one is the FIFO in the card; the second one is the
memory space inside the driver. Both of them
would be cleared after using this function.

See Also CanRcvMsg()

Usage C/C++

#include “pci7841.h

int handle = CanOpenDriver(0, 0); // open the
port 0 of card 0

….

CanClearRxBuffer(handle);

CanCloseDriver(handle);

Function Reference • 43

CanClearTxBuffer()

Purpose Clear Transmit Buffer

Prototype C/C++

void CanClearTxBuffer(int handle)

Parameters handle: handle retrieve from CanOpenDriver()

Return Value none

Remarks Clear the data in the transmit buffer.

Under a busy DeviceNet Network, your transmit
request may not be done due to the busy in the
network. The hardware will send it automatically
when bus is free. The un-send message would be
stored in the memory of the driver. The sequence of
outgoing message is the FIFO. According this
algorithm, if your program need to send an
emergency data, you can clear the transmit buffer
and send it again.

See Also CanRcvMsg()

Usage C/C++

#include “pci7841.h

int handle = CanOpenDriver(0, 0); // open the
port 0 of card 0

….

CanClearTxBuffer(handle);

CanCloseDriver(handle);

44 • Function Reference

CanGetErrorCode()

Purpose Get the Error Code

Prototype C/C++

BYTE CanGetErrorCode(int handle)

Parameters handle: handle retrieve from CanOpenDriver()

Return Value error code

Return error code is an 8-bit data

 Bit Symbol Name Value Function
7 ERRC1 Error Code 1
6 ERRC0 Error Code 0

1 Rx error occurred
during reception 5 DIR Direction

0 Tx error occurred
during transmission

4 SEG4 Segment 4
3 SEG3 Segment 3
2 SEG2 Segment 2
1 SEG1 Segment 1
0 SEG0 Segment 0

Bit interpretation of ERRC1 and ERRC2

Bit ERRC1 Bit ERRC2 Function
0 0 bit error
0 1 form error
1 0 stuff error
1 1 other type of error

Function Reference • 45

Bit interpretation of SEG4 to SEG 0

SEG4 SEG3 SEG2 SEG1 SEG0 Function
0 0 0 1 1 start of frame
0 0 0 1 0 ID.28 to ID.21
0 0 1 1 0 ID.20 to ID.18
0 0 1 0 0 bit SRTR
0 0 1 0 1 bit IDE
0 0 1 1 1 ID.17 to ID.13
0 1 1 1 1 ID.12 to ID.5
0 1 1 1 0 ID.4 to ID.0
0 1 1 0 0 RTR bit
0 1 1 0 1 reserved bit 1
0 1 0 0 1 reserved bit 0
0 1 0 1 1 Data length code
0 1 0 1 0 Data field
0 1 0 0 0 CRC sequence
1 1 0 0 0 CRC delimiter
1 1 0 0 1 acknowledge slot
1 1 0 1 0 end of frame
1 0 0 1 0 intermission
1 0 0 0 1 active error flag
1 0 1 1 0 passive error flag
1 0 0 1 1 tolerate dominant bits
1 0 1 1 1 error delimiter
1 1 1 0 0 overload flag

Remarks Get the information about the type and location of
errors on the bus.
When bus error occurs, if your program installed the
call-back function or error-handling event. The
error-bit position would be captured into the card.
The value would be fixed in the card until your
program read it back.

See Also CanGetErrorWarningLimit(),

 CanSetErrorWarningLimit()

Usage C/C++

46 • Function Reference

#include “pci7841.h

int handle = CanOpenDriver(0, 0); // open the
port 0 of card 0

….

BYTE data = CanGetErrorCode();

CanCloseDriver(handle);

Function Reference • 47

CanSetErrorWarningLimit()

Purpose Set the Error Warning Limit

Prototype C/C++

void CanSetErrorWarningLimit(int handle, BYTE
value)

Parameters handle: handle retrieve from CanOpenDriver()

value: Error Warning Limit

Return Value none

Remarks Sets the error warning limit if your program has
installed the error warning event or call-back function.
The error warning will be signaled after the value of
error counter passing the limit you set.

See Also CanGetErrorWarningLimit()

Usage C/C++

#include “pci7841.h

int handle = CanOpenDriver(0, 0); // open the
port 0 of card 0

….

CanSetErrorWarning(handle, 96);

CanCloseDriver(handle);

48 • Function Reference

CanGetErrorWarningLimit()

Purpose Get the Error Warning Limit

Prototype C/C++

BYTE CanGetErrorWarningLimit(int handle)

Visual Basic(Windows 95/98/NT)

Parameters handle: handle retrieve from CanOpenDriver()

Return Value 0-255 (Error warning limit value)

Remarks Get the error warning limit

See Also CanSetErrorWarningLimit()

Usage C/C++

#include “pci7841.h

int handle = CanOpenDriver(0, 0); // open the
port 0 of card 0

….

BYTE limit = CanClearOverrun(handle);

CanCloseDriver(handle);

Function Reference • 49

CanGetRxErrorCount()

Purpose Get the current value of the receive error counter

Prototype C/C++

BYTE CanGetRxErrorCount(int handle)

Parameters handle: handle retrieve from CanOpenDriver()

Return Value value

Remarks This function reflects the current of the receive error
counter. After hardware reset, the value returned
would be initialized to 0. If a bus-off event occurs,
the returned value would be 0.

See Also CanRcvMsg()

Usage C/C++

#include “pci7841.h

int handle = CanOpenDriver(0, 0); // open the
port 0 of card 0

….

BYTE error_count = CanGetRxErrorCount();

CanCloseDriver(handle);

50 • Function Reference

CanGetTxErrorCount()

Purpose Get the current value of the transmit error counter

Prototype C/C++

BYTE CanGetTxErrorCount(int handle)

Parameters handle: handle retrieve from CanOpenDriver()

Return Value value

Remarks This function reflects the current of the transmit error
counter. After hardware reset, the value would set to
127. A bus-off event occurs when the value reaches
255. You can call the CanSetTxErrorCount() to set
the value from 0 to 254 to clear the bus-off event.

See Also CanRcvMsg()

Usage C/C++

#include “pci7841.h

int handle = CanOpenDriver(0, 0); // open the
port 0 of card 0

….

BYTE error_count = CanGetTxErrorCount(handle);

CanCloseDriver(handle);

Function Reference • 51

CanSetTxErrorCount()

Purpose Set the current value of the transmit error counter

Prototype C/C++

void CanSetTxErrorCount(int handle, BYTE value)

Parameters handle: handle retrieve from CanOpenDriver()

value: a byte value

Return Value None

Remarks This function set the current of the transmit error
counter.

Please see the remark of CanGetTxErrorCount().

See Also CanRcvMsg()

Usage C/C++

#include “pci7841.h

int handle = CanOpenDriver(0, 0); // open the
port 0 of card 0

….

CanSetTxErrorCount(handle, 0);

CanCloseDriver(handle);

52 • Function Reference

CanGetPortStatus()

Purpose Get Port Status

Prototype C/C++

int CanGetPortStatus(int handle, PORT_STATUS
*PortStatus)

Parameters handle: handle retrieve from CanOpenDriver()

PortStatus: Pointer of PORT_STATUS structure

Return Value No Error: 0

Error: -1

Remarks Get Port Status(See the structure define for detailed
description)

See Also

Usage C/C++

#include “pci7841.h

PORT_STATUS port_status;

int handle = CanOpenDriver(0, 0);// open the port 0
of card 0

CanGetPortStatus(&port_status);

CanClearOverrun();

CanCloseDriver(handle);

Function Reference • 53

CanGetLedStatus()

Purpose Get the LED status of cPCI-7841 and PM-7841

Prototype C/C++

BYTE CanGetLedStatus (int card, int index);

Parameters card: card number

Index: index of LED

Return Value status of Led

Value Function

0 Led Off

1 Led On

Remarks Get the status of Led

This function supports the cPCI-7841 and PM-7841.

See Also CanSetLEDStatus()

Usage C/C++

#include “pci7841.h

int handle = CanOpenDriver(0, 0); // open the
port 0 of card 0

….

BYTE flag = CanGetLedStatus(0, 0);;

CanCloseDriver(handle);

54 • Function Reference

CanSetLedStatus()

Purpose Set the Led Status of cPCI-7841

Prototype C/C++

void CanSetLedStatus(int card, int index, int
flashMode);

Parameters card: card number

index: index of Led

flashMode:

Value Function

0 Led Off

1 Led On

Return Value none

Remarks Set Led status of cPCI-7841 and PM-7841

This function supports the cPCI-7841 and PM-7841

See Also CanRcvMsg()

Usage C/C++

#include “pci7841.h

int handle = CanOpenDriver(0, 0); // open the
port 0 of card 0

….

CanSetLedStatus(0, 0, 2); // Set Led
to flash

CanCloseDriver(handle);

Function Reference • 55

CanGetRcvCnt()

Purpose Get the how many message in the FIFO

Prototype C/C++

int _stdcall CanGetRcvCnt(int handle)

Parameters handle : handle retrieve from CanOpenDriver()

Return Value value indicates the left unread messages in the

FIFO.
Remarks Get the unread message count in the FIFO.
 Because the interrupt would be very busy while
 CAN bus is busy. There is possibility to lost the
 event in Windows system. A way to solve to this
 problem is to call this function at free time while
 program running. You also can call this function to
 make sure that receiving FIFO is empty.

See Also CanGetReceiveEvent()

Usage C/C++

#include “pci7841.h

int handle = CanOpenDriver(0, 0); // open the
port 0 of card 0

…..

int count = CanGetRcvCnt(handle);.

56 • Function Reference

 Error and Event Handling Functions
When the exception occurs, your program may need to take some
algorithm to recover the problem. The following functions are
operation-system depended functions. You should care about the
restriction in the operation-system.

 DOS Environment

CanInstallCallBack()

Purpose Install callback function of event under DOS
environment

Prototype C/C++ (DOS)

void far*CanInstallCallBack(int handle, int index,
void (far* proc)());

Parameters handle: handle retrieve from CanOpenDriver()

Index: event type

Index Type
2 Error Warning
3 Data Overrun
4 Wake Up
5 Error Passive
6 Arbitration Lost
7 Bus Error

void (far *proc)() : Call-back function

The suggest prototype of the call-back function is
like void (far ErrorWarning)();

Return Value Previous call back function (NULL when there is no
Call back installed)

Remarks Install the call-back function for event handling

In normal state, all hardware interrupt of
cPCI/PCI-7841 wouldn’t be set except receive and

Function Reference • 57

transmit interrupt. After calling the
CanInstallCallBack(), the corresponding interrupt
would be activated. The interrupt occurs when the
event happened. It will not be disabled until using
CanRemoveCallBack() or a hardware reset.

Actually, the call-back function is a part of ISR. You
need to care about the DOS reentrance problem,
and returns as soon as possible to preventing the
lost of data.

See Also CanRemoveCallBack()

Usage C/C++(DOS)

#include “pci7841.h

void (far ErrorWarning)();

int handle = CanOpenDriver(0, 0);

// open the port 0 of card 0

…

// Installs the ErrorWarning handling event and
stores the previous one.

void (far *backup) = CanInstallCallBack(0, 2,
ErrorWarning);

CanRemoveCallBack(0, 2, NULL); // Remove
the call-back function

CanCloseDriver(handle);

58 • Function Reference

CanRemoveCallBack()

Purpose Remove the callback function of event under DOS
environment

Prototype C/C++(DOS)

int CanRemoveCallBack(int handle, int index, void
(far* proc)());

Parameters handle: handle retrieve from CanOpenDriver()

Index: event type

Index Type
2 Error Warning
3 Data Overrun
4 Wake Up
5 Error Passive
6 Arbitration Lost
7 Bus Error

void (far *proc)() : Previous call-back function

Return Value Return 0 is successful

-1 if error occurs

Remarks Install the call-back function for event handling

In normal state, all hardware interrupt of
cPCI/PCI/PMC-7841(G) wouldn’t be set except
receive and transmit interrupt. After calling the
CanInstallCallBack(), the corresponding interrupt
would be activated. The interrupt occurs when the
event happened. It will not be disabled until using
CanRemoveCallBack() or a hardware reset.

Actually, the call-back function is a part of ISR. You
need to care about the DOS reentrance problem,
and returns as soon as possible to preventing the
lost of data.

Function Reference • 59

See Also CanRemoveCallBack()

Usage C/C++ (DOS)

#include “pci7841.h

void (far ErrorWarning)();

int handle = CanOpenDriver(0, 0); // open the
port 0 of card 0

…

// Installs the ErrorWarning handling event and
stores the previous one.

void (far *backup) = CanInstallCallBack(0, 2,
ErrorWarning);

CanRemoveCallBack(0, 2, NULL); // Remove
the call-back function

CanCloseDriver(handle);

60 • Function Reference

 Windows 95/98 Environment

CanGetReceiveEvent()

Purpose Install the event under Windows 95/98/NT system

Prototype C/C++ (Windows 95/98/NT)

void CanGetReceiveEvent(int handle, HANDLE
*hevent);

Parameters handle: handle retrieve from CanOpenDriver()

hevent: HANDLE point for receive event

Return Value none

Remarks Retrieve receive notify event

Under the Windows 95/98/NT environment, your
program can wait the input message by waiting an
event. You can refer to following program to use this
function. But the CAN system is a heavy-load
system. Under full speed(of course, it depends on
your system), the hardware receives the message
faster than the event occurs. Under this condition,
the event could be combined by OS. So the total
count of event may be less than actually receive.
You can call the CanGetRcvCnt() to retrieve the
unread message in the driver’s FIFO.

See Also CanGetRcvCnt()

Usage C/C++ (Windows 95/98/NT)

#include “pci7841.h

HANDLE recvEvent0;

int handle = CanOpenDriver(0, 0);

// open the port 0 of card 0

int count1;

Function Reference • 61

 CanGetReceiveEvent(handle, rcvEvent0);

if(WaitForSingleObject(rcvEvent0, INFINITE)
== WAIT_OBJECT_0)

{

// You need not to call ResetEvent()…..

err=CanRcvMsg(handle,&rcvMsg[0]
[rcvPatterns[0]]);

rcvPatterns[0]++;

}

cout1 = CanGetRcvCnt(handle[0]);

// To retrieve number of unread

// in the FIFO

62 • Function Reference

CanInstallEvent()

Purpose Install the event under Windows 95/98/NT system

Prototype C/C++ (Windows 95/98/NT)

int CanInstallEvent(int handle, int index, HANDLE
hEvent);

Parameters handle: handle retrieve from CanOpenDriver()

Index: event type

Index Type
2 Error Warning
3 Data Overrun
4 Wake Up
5 Error Passive
6 Arbitration Lost
7 Bus Error

hEvent: HANDLE created from
CreateEvent()(Win32 SDK)

Return Value Return 0 is successful

-1 if error occurs

Remarks Install the notify event

Unlike the Dos environment, there is only one error
handling function under Windows 95/98/NT
environment. First you need to create an event
object, and send it to the DLL. The DLL would make
a registry in the kernel and pass it to the VxD(SYS
in NT system). You can’t release the event object
you created, because it was attached to the VxD.
The VxD would release the event object when you
installed another event. One way to disable the
event handling is that you install another event
which handle is NULL (ex: CanInstallEvent(handle,
index, NULL)). And you can create a thread to
handle the error event.

Function Reference • 63

See Also CanRemoveCallBack(),CanInstallCallBack()

Usage C/C++ (Windows 95/98/NT)

#include “pci7841.h

int handle = CanOpenDriver(0, 0);

// open the port 0 of card 0

…

// Installs the ErrorWarning handling event and
stores the previous one.

HANDLE hEvent = CreateEvent(NULL, FALSE,
TRUE, “ErrorWarning”);

CanInstallEvent(0, 2, hEvent);

//..create a thread ….

 Thread function

 WaitForSingleObject(hEvent, INFINITE);

ResetEvent(hEvent);

// Event handling

Product Warranty/Service • 65

Warranty Policy
Thank you for choosing ADLINK. To understand your rights and enjoy all
the after-sales services we offer, please read the following carefully:

1. Before using ADLINK’s products please read the user manual and
follow the instructions exactly.

2. When sending in damaged products for repair, please attach an RMA
application form.

3. All ADLINK products come with a two-year guarantee, repaired free
of charge.
• The warranty period starts from the product’s shipment date from

ADLINK’s factory.
• Peripherals and third-party products not manufactured by

ADLINK will be covered by the original manufacturers’ warranty.
• End users requiring maintenance services should contact their

local dealers. Local warranty conditions will depend on local
dealers.

4. This warranty will not cover repair costs due to:
a. Damage caused by not following instructions.
b. Damage caused by carelessness on the users’ part during

product transportation.
c. Damage caused by fire, earthquakes, floods, lightening,

pollution, other acts of God, and/or incorrect usage of voltage
transformers.

d. Damage caused by unsuitable storage environments (i.e. high
temperatures, high humidity, or volatile chemicals.

e. Damage caused by leakage of battery fluid.
f. Damage from improper repair by unauthorized technicians.
g. Products with altered and/or damaged serial numbers.
h. Other categories not protected under our guarantees.

5. Customers are responsible for shipping costs to transport damaged
products to our company or sales office.

6. To ensure the speed and quality of product repair, please download a
RMA application form from our company website:
www.adlinktech.com. Damaged products with attached RMA forms
receive priority.

For further questions, please contact our FAE staff.
ADLINK: service@adlinktech.com

